• 제목/요약/키워드: q-number

검색결과 1,058건 처리시간 0.028초

A NEW MEAN VALUE RELATED TO D. H. LEHMER'S PROBLEM AND KLOOSTERMAN SUMS

  • Han, Di;Zhang, Wenpeng
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.35-43
    • /
    • 2015
  • Let q > 1 be an odd integer and c be a fixed integer with (c, q) = 1. For each integer a with $1{\leq}a{\leq}q-1$, it is clear that the exists one and only one b with $0{\leq}b{\leq}q-1$ such that $ab{\equiv}c$ (mod q). Let N(c, q) denote the number of all solutions of the congruence equation $ab{\equiv}c$ (mod q) for $1{\leq}a$, $b{\leq}q-1$ in which a and $\bar{b}$ are of opposite parity, where $\bar{b}$ is defined by the congruence equation $b\bar{b}{\equiv}1$ (modq). The main purpose of this paper is using the mean value theorem of Dirichlet L-functions to study the mean value properties of a summation involving $(N(c,q)-\frac{1}{2}{\phi}(q))$ and Kloosterman sums, and give a sharper asymptotic formula for it.

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • 대한수학회논문집
    • /
    • 제24권3호
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

ON THE PARITY OF THE CLASS NUMBER OF SOME REAL BIQUADRATIC FUNCTION FIELD

  • Ahn, Jaehyun;Jung, Hwanyup
    • 충청수학회지
    • /
    • 제23권1호
    • /
    • pp.169-176
    • /
    • 2010
  • Let $k={\mathbb{F}}_q(T)$ and ${\mathbb{A}}={\mathbb{F}}_q[T]$. In this paper, we obtain the the criterion for the parity of the ideal class number h(${\mathcal{O}}_K$) of the real biquadratic function field $K=k(\sqrt{P_1},\;\sqrt{P_2})$, where $P_1$, $P_2{\in}{\mathbb{A}}$ be two distinct monic primes of even degree.

ON THE γ-TH HYPER-KLOOSTERMAN SUMS AND A PROBLEM OF D. H. LEHMER

  • Tianping, Zhang;Xifeng, Xue
    • 대한수학회지
    • /
    • 제46권4호
    • /
    • pp.733-746
    • /
    • 2009
  • For any integer k $\geq$ 2, let P(c, k + 1;q) be the number of all k+1-tuples with positive integer coordinates ($a_1,a_2,...,a_{k+1}$) such that $1{\leq}a_i{\leq}q$, ($a_i,q$) = 1, $a_1a_2...a_{k+1}{\equiv}$ c (mod q) and 2 $\nmid$ ($a_1+a_2+...+a_{k+1}$), and E(c, k+1; q) = P(c, k+1;q) - $\frac{{\phi}^k(q)}{2}$. The main purpose of this paper is using the properties of Gauss sums, primitive characters and the mean value theorems of Dirichlet L-functions to study the hybrid mean value of the r-th hyper-Kloosterman sums Kl(h,k+1,r;q) and E(c,k+1;q), and give an interesting mean value formula.

낙엽성(落葉性) 참나무류 인공교잡(人工交雜) 묘목(苗木)의 엽형(葉形) 특성(特性)(II) (Leaf Morphological Characteristics of Artificial Hybrids on Some Deciduous Quercus Taxa(II))

  • 이정호;권기원
    • 한국산림과학회지
    • /
    • 제89권1호
    • /
    • pp.18-23
    • /
    • 2000
  • 3~5년생 참나무류 인공잡종 묘목의 잎의 형태를 조사하였다. Quercus serrata, Q. dentata, Q. crispula, Q. aliena간의 교잡 $F_1$에 대한 잎의 크기(잎의 길이, 잎의 넓이)는 많은 조합에서 양친종의 중간 크기였다. 잎자루 길이는 Q. aliena ${\times}$ Q. crispula $F_1$이 가장 작았고, Q. aliena ${\times}$ Q. serrata $F_1$, Q. dentata ${\times}$ Q. aliena $F_1$은 양친종의 중간이었다. $F_1$의 결각의 수는 교배모수에 가까운 것이 많았다. 결각의 깊이와 잎의 형상비는 양친종 중간의 것이 많았다.

  • PDF

A remark on p-adic q-bernoulli measure

  • Kim, Han-Soo;Lim, Pil-Sang;Kim, Taekyun
    • 대한수학회보
    • /
    • 제33권1호
    • /
    • pp.39-44
    • /
    • 1996
  • Throughout this paper $Z^p, Q_p$ and C_p$ will denote the ring of p-adic rational integers, the field of p-adic rational numbers and the completion of the algebraic closure of $Q_p$, respectively. Let $v_p$ be the normalized exponential valuation of $C_p$ with $$\mid$p$\mid$_p = p^{-v_p (p)} = p^{-1}$. We set $p^* = p$ for any prime p > 2 $p^* = 4 for p = 2$.

  • PDF

REMARKS FOR BASIC APPELL SERIES

  • Seo, Gyeong-Sig;Park, Joong-Soo
    • 호남수학학술지
    • /
    • 제31권4호
    • /
    • pp.463-478
    • /
    • 2009
  • Let k be an imaginary quadratic field, ℌ the complex upper half plane, and let ${\tau}{\in}k{\cap}$ℌ, q = exp(${\pi}i{\tau}$). And let n, t be positive integers with $1{\leq}t{\leq}n-1$. Then $q^{{\frac{n}{12}}-{\frac{t}{2}}+{\frac{t^2}{2n}}}{\prod}^{\infty}_{m=1}(1-q^{nm-t})(1-q^{nm-(n-t)})$ is an algebraic number [10]. As a generalization of this result, we find several infinite series and products giving algebraic numbers using Ramanujan's $_{1{\psi}1}$ summation. These are also related to Rogers-Ramanujan continued fractions.

K-means 클러스터링을 이용한 케이블 접속재 계면결함의 부분방전 분포 해석 (Partial Discharge Distribution Analysis on Interlace Defects of Cable Joint using K-means Clustering)

  • 조경순;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제20권11호
    • /
    • pp.959-964
    • /
    • 2007
  • To investigate the influence of partial discharge(PD) distribution characteristics due to various defects on the power cable joints interface, we used the K-means clustering method. As the result of PD number(n) distribution analyzing on $\Phi-n$ graph, the phase angle($\Phi$) of cluster centroid shifted to $0^{\circ}\;and\;180^{\circ}$ increasing with applying voltage. It was confirmed that the PD quantify(q) and euclidean distance of centroid were increased with applying voltage from the centroid distribution analyzing of $\Phi-q$ plane. The dispersion degree was increased with calculated standard deviation of the $\Phi-q$ cluster centroid. The PD number and mean value on $\Phi-q$ graph were some different by electric field concentration with defect types.

ASYMPTOTIC NUMBERS OF GENERAL 4-REGULAR GRAPHS WITH GIVEN CONNECTIVITIES

  • Chae, Gab-Byung
    • 대한수학회보
    • /
    • 제43권1호
    • /
    • pp.125-140
    • /
    • 2006
  • Let $g(n,\;l_1,\;l_2,\;d,\;t,\;q)$ be the number of general4-regular graphs on n labelled vertices with $l_1+2l_2$ loops, d double edges, t triple edges and q quartet edges. We use inclusion and exclusion with five types of properties to determine the asymptotic behavior of $g(n,\;l_1,\;l_2,\;d,\;t,\;q)$ and hence that of g(2n), the total number of general 4-regular graphs where $l_1,\;l_2,\;d,\;t\;and\;q\;=\;o(\sqrt{n})$, respectively. We show that almost all general 4-regular graphs are 2-connected. Moreover, we determine the asymptotic numbers of general 4-regular graphs with given connectivities.