• Title/Summary/Keyword: q-Casorati determinant

Search Result 1, Processing Time 0.013 seconds

FINITE LOGARITHMIC ORDER SOLUTIONS OF LINEAR q-DIFFERENCE EQUATIONS

  • Wen, Zhi-Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.83-98
    • /
    • 2014
  • During the last decade, several papers have focused on linear q-difference equations of the form ${\sum}^n_{j=0}a_j(z)f(q^jz)=a_{n+1}(z)$ with entire or meromorphic coefficients. A tool for studying these equations is a q-difference analogue of the lemma on the logarithmic derivative, valid for meromorphic functions of finite logarithmic order ${\rho}_{log}$. It is shown, under certain assumptions, that ${\rho}_{log}(f)$ = max${{\rho}_{log}(a_j)}$ + 1. Moreover, it is illustrated that a q-Casorati determinant plays a similar role in the theory of linear q-difference equations as a Wronskian determinant in the theory of linear differential equations. As a consequence of the main results, it follows that the q-gamma function and the q-exponential functions all have logarithmic order two.