• Title/Summary/Keyword: q, p-Pochhammer symbol

Search Result 11, Processing Time 0.024 seconds

A p-DEFORMED q-INVERSE PAIR AND ASSOCIATED POLYNOMIALS INCLUDING ASKEY SCHEME

  • Savalia, Rajesh V.
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1175-1199
    • /
    • 2019
  • We construct a general bi-basic inverse series relation which provides extension to several q-polynomials including the Askey-Wilson polynomials and the q-Racah polynomials. We introduce a general class of polynomials suggested by this general inverse pair which would unify certain polynomials such as the q-extended Jacobi polynomials and q-Konhauser polynomials. We then emphasize on applications of the general inverse pair and obtain the generating function relations, summation formulas involving the associated polynomials and derive the p-deformation of some of the q-analogues of Riordan's classes of inverse series relations. We also illustrate the companion matrix corresponding to the general class of polynomials; this is followed by a chart showing the reducibility of the extended p-deformed Askey-Wilson polynomials as well as the extended p-deformed q-Racah polynomials.

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF

$q$-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN TWO VARIABLES

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.253-265
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subse- quently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}_{n}^{m}(\cdot)$. Here, we aim at defining a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}_{n}^{2}(\cdot)$ and presenting their several generating functions.

FORMULAS DEDUCIBLE FROM A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN SEVERAL VARIABLES

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.603-614
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. In this sequel, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in $m$ variables to present two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, we show that many formulas regarding the Gottlieb polynomials in m variables and their reducible cases can easily be obtained by using one of two generating functions for Choi's generalization of the Gottlieb polynomials in m variables expressed in terms of well-developed Lauricella series $F^{(m)}_D[{\cdot}]$.

A SUMMATION FORMULA FOR THE SERIES 3F2 DUE TO FOX AND ITS GENERALIZATIONS

  • Choi, Junesang;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.103-108
    • /
    • 2015
  • Fox [2] presented an interesting identity for $_pF_q$ which is expressed in terms of a finite summation of $_pF_q$'s whose involved numerator and denominator parameters are different from those in the starting one. Moreover Fox [2] found a very interesting and general summation formula for $_3F_2(1/2)$ as a special case of his above-mentioned general identity with the help of Kummer's second summation theorem for $_2F_1(1/2)$. Here, in this paper, we show how two general summation formulas for $$_3F_2\[\array{\hspace{110}{\alpha},{\beta},{\gamma};\\{\alpha}-m,\;\frac{1}{2}({\beta}+{\gamma}+i+1);}\;{\frac{1}{2}}\]$$, m being a nonnegative integer and i any integer, can be easily established by suitably specializing the above-mentioned Fox's general identity with, here, the aid of generalizations of Kummer's second summation theorem for $_2F_1(1/2)$ obtained recently by Rakha and Rathie [7]. Several known results are also seen to be certain special cases of our main identities.

A REDUCIBILITY OF SRIVASTAVA'S TRIPLE HYPERGEOMETRIC SERIES F(3)[x, y, z]

  • Choi, Junesang;Wang, Xiaoxia;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.297-301
    • /
    • 2013
  • When certain general single or multiple hypergeometric functions were introduced, their reduction formulas have naturally been investigated. Here, in this paper, we aim at presenting a very interesting reduction formula for the Srivastava's triple hypergeometric function $F^{(3)}[x,y,z]$ by applying the so-called Beta integral method to the Henrici's triple product formula for hypergeometric series.

CERTAIN HYPERGEOMETRIC IDENTITIES DEDUCIBLE BY USING THE BETA INTEGRAL METHOD

  • Choi, Junesang;Rathie, Arjun K.;Srivastava, Hari M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1673-1681
    • /
    • 2013
  • The main objective of this paper is to show how one can obtain eleven new and interesting hypergeometric identities in the form of a single result from the old ones by mainly employing the known beta integral method which was recently introduced and used in a systematic manner by Krattenthaler and Rao [6]. The results are derived with the help of a generalization of a well-known hypergeometric transformation formula due to Kummer. Several identities including one obtained earlier by Krattenthaler and Rao [6] follow as special cases of our main results.

Reduction Formulas for Srivastava's Triple Hypergeometric Series F(3)[x, y, z]

  • CHOI, JUNESANG;WANG, XIAOXIA;RATHIE, ARJUN K.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.439-447
    • /
    • 2015
  • Very recently the authors have obtained a very interesting reduction formula for the Srivastava's triple hypergeometric series $F^{(3)}$(x, y, z) by applying the so-called Beta integral method to the Henrici's triple product formula for the hypergeometric series. In this sequel, we also present three more interesting reduction formulas for the function $F^{(3)}$(x, y, z) by using the well known identities due to Bailey and Ramanujan. The results established here are simple, easily derived and (potentially) useful.