본 논문은 대량의 데이터를 활용한 모델 개발 시 다양한 라이브러리를 갖춘 파이썬 언의의 성능 향상방법을 다룬다. 파이썬 언어는 엑셀과 같은 스프레드시트 형태 데이터 처리 시 Pandas 라이브러리를 사용한다. 데이터 처리 시파이썬은 기가단위 이하 데이터 처리 시에는 인-메모리로 연산하여 성능 측면에서 크게 이슈가 없다. 하지만 기가단위 이상 데이터 처리 시 성능 이슈가 발생한다. 이에 본 논문은 데이터 처리 시 Pandas와 같이 사용할 수 있는 Dask 라이브러리를 활용하여 단일 클러스터 및 다중 클러스터에서 실행 작업을 분산처리 가능한 방법을 소개한다. 실험은 동일 사양의 하드웨어에서 간단한 지수산출 모델을 Pandas만 사용해서 처리하는 속도와 Dask를 같이 사용해서 처리하는 속도를 비교한다. 본 논문은 파이썬의 장점인 다양한 라이브러리를 쉽게 사용할 수 있다는 점을 유지하면서 성능측면에서도 대량의 데이터를 CPU 코어들이 분산 처리하여 모델을 개발할 수 있는 방법을 제시한다.
프로그래밍 언어의 형식적인 의미를 적절하게 표현하면 언어를 표준화하고 최적화하여 번역하는 과정에서 중요한 역할을 수행한다. 파이썬은 주목받는 강력한 언어이고, 파이썬에 대한 형식적인 의미 구조를 정의하고 표현하는 것은 향후 유사한 언어를 설계할 때 참고할 수 있고 표준화하는 과정이나 최적화된 번역기를 구현하는 과정에서도 필요하다. 본 연구에서는 파이썬에 대한 의미 구조를 표현하기 위해 기존의 작용식을 수정하고 업그레이드해서 파이썬의 정적이고 동적인 의미 구조를 표현하는 작용식 2.0을 새롭게 제시한다. 작용식 2.0에 명세된 의미구조를 자바로 구현해 파이썬 프로그램들에 대한 실행시간을 측정하고 시뮬레이션을 통해 작용식 2.0이 구현 가능한 실제적인 의미 구조임을 입증하고, 판독성(Readability), 모듈성(Modularity), 확장성(Extensibility), 융통성(Flexibility)의 네 영역에서 명세된 작용식 2.0을 기존의 대표적인 의미 표현법과 비교하여 본 작용식 2.0의 우월성을 확인하고자 한다.
Hadoop is a framework to process large data sets in a distributed way across clusters of nodes. It has been a popular platform to process big data, but in recent years, other platforms became competitive ones depending on the characteristics of the application. Spark is one of distributed platforms to enable real-time data processing and improve overall processing performance over Hadoop by introducing in-memory processing instead of disk I/O. Whereas Hadoop is designed to work on Java and data analysis is processed using Java API, Spark provides a variety of APIs with Scala, Python, Java and R. In this paper, the goal is to find out whether the APIs of different programming languages af ect the performances in Spark. We chose two popular APIs: Python and Scala. Python is easy to learn and is used in AI domain in a wide range. Scala is a programming language with advantages of parallelism. Our experiment shows much faster processing with Scala API than Python API. For the performance issues on AI-based analysis, further study is needed.
본 연구는 블록 코딩을 선행 학습한 학생들에게 적용할 수 있는 Python 교육 프로그램의 개발에 관한 것이다. 우선 초중등학교 교육과정과 EPL 교재의 분석을 통해 블록코딩 학습자의 수준을 분석하고 블록 코딩에서 사용된 개념을 중심으로 Python 문법을 추출하여 교육과정을 구성한 뒤 PBL 수업에 맞는 Python 교육 프로그램을 총 16차시로 개발하였다. Python 교육프로그램의 적절성을 검증하기 위해 2차의 전문가의 타당도 검사를 하였다. 검사 결과, 1차 타당도 24문항에서 CVR값 .78 점 이상으로 나타나 일부 수정, 보완하였다. 2차 검사에서는 21개 문항은 타당성을 확보하였고 CVR 최소값인 .99 이하인 3개 문항의 내용에 대해 수정하여 교육 프로그램을 완성하였다. 개발된 교육 프로그램이 스크립트코딩을 학습하기 위한 기초 자료로 유용하게 활용되길 기대한다.
본 논문에서는 파이썬 코딩 플랫폼에서의 LLM(Large Language Models)을 로직 및 문법 에러 확인, 디버깅 도구로 활용할 수 있는 시스템을 제안한다. 이 시스템은 사용자가 코딩 플랫폼에서 작성한 파이썬 코드와 함께 발생한 에러 문구 및 프롬프트를 LLM 모델에 입력함으로써 로직(문법) 에러를 식별하고 디버깅에 활용할 수 있다. 특히, 입문자를 고려해 프롬프트를 제한하여 사용의 편의성을 높인다. 이를 통해 파이썬 코딩 교육에서 입문자들의 학습 과정을 원활하게 진행할 수 있으며, 파이썬 코딩에 대한 진입 장벽을 낮출 수 있다.
본 논문에서는 산업공학의 전통적인 전공 교과목을 강의할 때 현 시점 산업계 및 학계에서 가장 활용도가 높은 프로그래밍 언어인 파이썬 언어를 분석 도구로 활용하는 것을 제안한다. 사례 연구로서 공학 프로젝트의 경제성을 분석할 수 있는 역량을 길러주는 전공 교과목인 경제성공학을 채택하였으며, 파이썬에서 다양한 재무함수를 구현한 라이브러리인 numpy-financial를 포함하여 간단한 연산 및 수치 해석을 위한 numpy와 scipy, 시각화를 위한 matplotlib 라이브러리를 주로 활용하였다. 익명의 수강생들을 대상으로 강의의 만족도를 조사한 결과 본 논문에서 제안하는 교육 방식이 교육 만족도와 강의 전달력 측면에서 우수한 성과를 보였고, 경제성공학 뿐 아니라 다른 전통적인 산업공학 과목에 대해서도 전공 학생들의 추가적인 수요가 있음을 확인할 수 있었다.
이 논문에서는 일반적인 웹 접근 방법으로 접근하기 어려운 프레임 내 웹 페이지의 데이터를 프로그램에 의해 자동으로 수집하기 위한 세부 주소 확보 기법을 제안하였다. 제안한 세부 주소 확보 기법과 HTML 실렉터를 활용할 수 있는 Python 언어와 Beautiful Soup 라이브러리를 이용하여 여러 페이지로 작성되어 있는 게시판 텍스트 데이터를 자동으로 모두 수집할 수 있었다. 제안한 기법을 활용하여 어떠한 형태의 주소 형식으로 되어 있는 웹 페이지들에 대해서도 Python 웹스크래핑 프로그램에 의해 자동으로 대량의 데이터를 수집할 수 있으며, 이를 통해 빅데이터 분석에 활용될 수 있을 것으로 예상한다.
본 논문은 순수하게 파이썬 언어로 작성된 연산에 대하여 just-in-time (JIT) 컴파일을 적용하여 전체 계산 속도를 향상시킬 수 있는 numba 라이브러리에 대한 사용법과 응용에 대하여 소개한다. 실제 통계 계산 문제에 대한 numba 라이브러리의 적용에 대한 예제로 반복문 사용이 요구되는 통계 계산 문제들 중 순열 검정과 정규 혼합 분포의 모수 추정의 EM 알고리즘을 고려하였으며 순수한 파이썬 구문 및 반복문을 활용한 계산 시간과 numba를 활용한 계산 시간을 비교하여 numba 라이브러리 활용의 효율성을 수치적으로 제시하였다.
파이썬 프로그래밍 언어를 강의하는 과목은, 일반 대학에서 모든 재학생이 필수로 이수하는 교양 과목으로 대부분 운영되고 있다. 이를 통해, 컴퓨팅 사고에 의한 기초 프로그래밍 과정을 학습한 비전공자 학생들이 다양한 전공 분야에서 SW를 적용할 수 있는 융합 역량을 강화하고 있다. 기존 연구결과에서는 컴퓨팅 사고 개념 이해와 코드 작성 역량에 대한 다양한 평가 방법들이 제시되었다. 그러나, 평가 문제 사례는 제시되지 않아, 실제 과목 운영 시 적용하는 데 어려움이 있다. 이에 본 논문에서는 비전공자들을 위한 교양과목으로 적용할 수 있는 파이썬 기초 프로그래밍 커리큘럼을 ADDIE 모형에 따라 제안하였다. 그리고 제안된 상세 커리큘럼에 따른 파이썬 요소별 평가 문제 사례를 1차와 2차로 나누어 제안하였다. 마지막으로 본 평가 문제 사례를 적용한 강좌에서 산출된 비전공자 학생들의 평가 점수 결과를 바탕으로 제안한 평가 문제의 유효성을 분석하였다. 제안된 평가 문제 사례는 실시간 온라인 비대면 평가 방식으로 적용하여, 효과적으로 비전공자 학생들의 프로그래밍 역량을 평가할 수 있음을 확인하였다.
One of the elements of technology that has become extremely critical within the field of education today is Deep learning. It has been especially used in the area of natural language processing, with some word-representation vectors playing a critical role. However, some of the low-resource languages, such as Swahili, which is spoken in East and Central Africa, do not fall into this category. Natural Language Processing is a field of artificial intelligence where systems and computational algorithms are built that can automatically understand, analyze, manipulate, and potentially generate human language. After coming to discover that some African languages fail to have a proper representation within language processing, even going so far as to describe them as lower resource languages because of inadequate data for NLP, we decided to study the Swahili language. As it stands currently, language modeling using neural networks requires adequate data to guarantee quality word representation, which is important for natural language processing (NLP) tasks. Most African languages have no data for such processing. The main aim of this project is to recognize and focus on the classification of words in English, Swahili, and Korean with a particular emphasis on the low-resource Swahili language. Finally, we are going to create our own dataset and reprocess the data using Python Script, formulate the syllabic alphabet, and finally develop an English, Swahili, and Korean word analogy dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.