• Title/Summary/Keyword: pyrophyllite ore

Search Result 26, Processing Time 0.026 seconds

Wall Rock Alteration and Genetic Environment of the Milyang Pyrophyllite Deposit (밀양 납석광상의 모암변질작용과 생성환경)

  • Lee, Kangwon;Moon, Hi-Soo;Song, Yungoo;Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.289-309
    • /
    • 1993
  • Milyang pyrophyllite deposit which was formed by hydrothermal alteration occurs in Late Cretaceous andesitic tuff in the Milyang area, Gyeongsangnamdo. The wall rock alteration and genesis of the Milyang pyrophyllite deposit were studied. The ore minerals are composed dominantly of pyrophyllite accompanied by small amounts of quartz, kaolinite, pyrite, dumortierite and diaspore. The alteration halo of this deposit can be divided into three zones on the basis of mineral assemblage; pyrophyllite, sericite and chlorite zone. The common mineral assemblages of each alteration zone are as follows: (1) pyrophyllite zone; pyrophyllite-quartz-kaolinite-pyrite-dumortierite-diaspore, (2) sericite zone; sericite-quartz-pyrite-kaolinite, and (3) chlorite zone; chlorite-plagioclase-quartz. Major element chemistry shows that characteristic depletion in MgO, CaO, and $Na_2O$ and relative increase in FeO from less altered chlorite zone to extensively altered pyrophyllite zone corresponding to variation in mineral assemblages. The paragenesis of ore minerals, oxygen isotope data, chlorite and illite geothermometry suggest that ore deposit was formed at about $250{\sim}330^{\circ}C$. Both hydrogen and silica activities are high in pyrophyllite zone. Potassium activity increases in sericite zone while hydrogen activity becomes low in chlorite zone. The pyrophyllite zone was formed relatively higher temperature than those of sericite and chlorite zones. The ore fluid was considered to be magmatic water in origin derived from the residual granitic magma which interacted with meteoric water.

  • PDF

A Study on the Genesis and Distribution of High Refractory Ore Minerals in Jeonnam Province, Korea (고내화도(高耐火度) 광석광물(鑛石鑛物)의 분포(分布)와 성인(成因)에 관(關)한 연구(硏究) -전남지역(全南地域)을 중심(中心)으로-)

  • Park, Hong Bong;Kwon, Sook Moon;Park, Bae Young;Sin, Sang Eun
    • Economic and Environmental Geology
    • /
    • v.15 no.2
    • /
    • pp.89-102
    • /
    • 1982
  • Several mines in Jeonnam produce the ores of having high SK number of refractoriness. Among those for 5 mines, this paper deals with the relationahip between SK number and mineral composition of the ore, and with the genesis of the deposits. 1. Byok-Song and Chon-Un Mine: Mineral compositions of the ores are chiastolite, chloritoid(monoclinic), kaolinite, sericite, diaspore, corundum, and quartz. The ores having SK number of 36 or 37, consist chiefly of chiastolite and diaspore and a little amount of kaolinite, sericite, corundum, chloritoid, and quartz. The ores having SK number of 33 or 34 consist of chloritoid, sericite, kaolinite, chiastolite, and diaspore. With increasing the amount of chloritoid and sericite, and decreasing the amount of diaspore and chiastolite, the SK number of the ores decreases. The deposit, originally high alumina-bearing shale of Chon-Un San formation, seems to be formed by contact metamorphism(forming of chiastolite), regional metamorphism(forming of monoclinic chloritoid), and hydrothermal replacement(forming of large crystal of diaspore veinlets). 2. Song-Sauk Mine: Mineral compositions of the ores are chiefly pyrophyllite and quartz and a little amount of kaolinite, dickite, diaspore, and pyrite. Many spherical inclusions containing in pyrophyllite deposits, consist chiefly of diaspore and kaolinite, The inclusions have the high SK number of 38. Amount of spherical inclusions is about 5 % to the whole pyrophyllite ores. The SK number of other pyrophyllite ore is less than 32. Quartz and pyrite are chief minerals lowering the SK number of the ore. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff of Mesozoic age. Spherical inclusions consisting of diaspore and kaolinite, show the selective replacement of hydrothermal solutions to the materials of feldspar in tuff. 3. Seung-San Mine: Mineral compositions of the ores are chiefly kaolinite, dickite, diaspore, and quartz. But some part of the mine consists of alunite deposits. The ores having SK number of 35 or higher consist chiefly of kaolinite and diaspore and a little amount of quartz. With increasing the amount of quartz and decresing the amount of diaspore, the SK number of the ore decreases. The deposits have been formed by hydrothermal processes by replacing the siliceous tuff and quartz porphyry. 4. Wan-Do Mine: Mineral compositions of the ores are chiefly pyrophyllite and quartz. But some ore contains a little amount of diaspore, kaolinite, pyrite, and chloritoid. The ores having high SK number of 36 consist chiefly of diaspore and pyrophyllite. Pyrophyllite ore has a SK number of 32 or lower. Amount of quartz and pyrite decreases the SK number of ores in this mine. Rhyolite was replaced by the action of hydrothermal solutions forming the pyrophyllite deposits.

  • PDF

A Geochemical Study on the Alunite Zone of the Nohwa Pyrophyllite Deposits (노화납석광산에서 산출되는 명반석대에 대한 지구화학적 연구)

  • Shin, Sang Eun;Park, Hong Bong
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.373-378
    • /
    • 1992
  • Ores of the Nohwa Pyrophyllite Deposits are composed mainly of pyrophyllite, kaolinite (dickite), quartz, pyrite, alunite and diaspore, etc. Alunite ore zone is located in the middle-lower parts of the deposits. Alunite ore zone with thickness of 20~30 cm is divided into two parts according to alunite contents: reddish and white greyish zone in the upper and lower parts, respectively. And the reddish alunitic ore has higher contents $Al_2O_3$, $K_2O$, $Na_2O$ and Ig.loss than the white greyish alunitic ore. Perhaps alunitization of the deposits occurred in the vicinity of paleo-ground water table. EPMA data shows that sodium replaces potassium considerably in alunite structures and that the hydrothermal solution probably contains considerable amounts of sodium.

  • PDF

Wall Rock Alteration of the Haenam Pyrophyllite Deposit Related to Felsic Volcanism, Southern Korea (전남 해남지역 해남 납석광상의 변질작용 및 생성환경)

  • Moon, Hi-Soo;Jeong, Seung Woo;Song, Yungoo;Park, Young Surk
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.83-96
    • /
    • 1991
  • Haenam pyrophyllite deposit occurred in the rhyolitic tuff of late Cretaceous age is located in the northern part of Haenam-gun, Jeonranam-do. The ore of the Haenam deposit is predominantly composed of pyrophyllite and illite accompanying such clay minerals as kaolinite, chlorite, and smectite. Pyrophyllite ore at the center of altered mass is often associated with kaolin minerals and high temperature minerals such as corundum, andalusite, and diaspore. On the basis of mineral assemblage the Haenam deposit can be devided into three alteration zones from the center to the margin of the deposit; the pyrophyllite zone, kaolinite zone, and illite zone. All alteration zones are associated with appreciable amounts of chalcedonic quartz. Those mineral assemblages indicate that hydrothermal solution which produced the Haenam deposit is strongly acidic solution with high silica and hydrogen activity and low $SO_4{^{2-}}$ activity. Discriminant analysis shows that $Na_2O$, $K_2O$, and $Al_2O$, of major elements are discriminant elements which classify alteration zones, while in case of trace elements Cr, Ni, and Sr turned out to be discriminant elements in this deposit. According to the mineral assemblage and illite geothermometry, pyrophyllite ore is considered to have been formed at about $240-290^{\circ}C$. K-Ar isotopic age for illite from this deposit indicates that it was formed at much the same age of later stage volcanics in the area, suggesting that the hydrothermal alteration of these deposits is associated with later volcanism of the area.

  • PDF

The Mineralogical and Chemical Characteristics of Fe Impurities and the Efficiency of their Removal Using Microwave Heating and Magnetic Separation in the Pyrophyllite Ore (엽납석광석에 존재하는 Fe 불순물의 광물학적/화학적 특성과 마이크로웨이브 가열 및 자력분리에 의한 제거효과)

  • Cho, Kang-Hee;Kim, Bong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.47-58
    • /
    • 2016
  • The Fe-component of pyrophyllite is an impurity that reduces its grade in the final product. In order to identify the amount of impurity in pyrophyllite and to remove the Fe from the ore using a dry method, microwave heating and magnetic separation were carried out. Pyrite and hematite were identified to contain pyrophyllite by microscopy, XRD, XRF, SEM/EDS and EPMA analysis. It is suggested that the euhedral pyrite in the pyrophyllite is formed by hydrothermal solution, and then the dissolution cavity structure is formed with a partial remainder of the pyrite which dissolved in acidic water. And the $Fe^{3+}$ ion contained in the acidic water precipitated out in the concentric structure of hematite as the origin of sedimentary structure. As a result of the microwave heating and magnetic separation experiments, the Fe removal rates obtained were 96% and 93% from pyrophyllite ore from the Sunsan mine and Wando mine, respectively. It is confirmed that the microwave heating and magnetic separation method was an environmentally friendly method to upgrade the low-grade pyrophyllite.

Genesis of Kaolin-Pyrophyllite Deposits in the Youngnam Area (영남지역 고령토-납석 광상의 성인 연구)

  • Sang, Ki-Nam
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.101-114
    • /
    • 1992
  • Occurrences of many kaolin-pyrophyllite deposits in the Youngnam area is related to the Late Cretaceous volcanic rocks, which are widely distributed through southern part from Tongnae-Yangsan to Miryang-Wolsung. The mode of occurrence and genesis of the kaolin-pyrophyllite deposits related to the volcanism was studied. This area is covered by andesitic rocks, rhyolite and rhyolitic welded tuff in ascending order. Lower most andesitic part is almost fresh. The altered rocks in the rhyolitic welded tuff can be classified into the following zones: silicified, pyrophyllite-kaolin, and argillic zone from the center part of ore deposit. The clay deposits occur as irregular massive, layer and funnel type about 5~20 m in width and is accompanied by thin diaspore bed outside of ore shoot. The clays chiefly consist of kaolinite, sericite, pyrophyllite, a little amount of diaspore, alunite, dumortierite, corundum and pyrite. The process of kaolinization-pyrophyllitization has a close relation to a local acidic hydrothermal solution originated from granitic rocks. Acidic hydothermal alteration occurrs mainly in the rhyolitic welded tuff. Initial solution containing $H_2S$ and others was oxidized near the surface and formed hydrothermal sulfuric acid solution.

  • PDF

Oxygen and Sulfur Isotope Composition, and Genesis of Some Pyrophyllite Deposits Distributed in the Kyeongnam and Cheonnam Provinces (경남(慶南) 및 전남(全南) 일부(一部) 납석광상(蠟石鑛床)의 산소(酸素)-황(黃) 동위원소조성(同位元素組成)과 광상성인(鑛床成因))

  • Chon, Hyo Taek;Cheong, Young Wook;Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.97-105
    • /
    • 1991
  • Oxygen and sulfur isotope composition of pyrophyllite and pyrite from six pyrophyllite deposits in the Yangsan-Milyang areas (the Cheonbulsan, Dumyong, Dongrae, Youkwang, Sungjin and Milyang mines), and five deposits in the Whasoon-Dado-Haenam areas (the Byuksong, Songseok, Dado, Bugock and Nowha mines) were measured. Pyrophyllite ores both from the Yangsan-Milyang areas and the Dado-Haenam areas are composed mainly of high alumina minerals such as pyrophyllite, sericite and kaolinite. Most of altered rocks show diagnostic chacteristics of bleaching effect. Major minerals of the Songseok ore deposit in the Whasoon area are pyrophyllite, and diaspore with minor amounts of kaolinite and quartz. The Byuksong ores from the Whasoon area were composed mainly of andalusite, kaolinite, pyrophyllite and mica with small amounts of chloritoid, quartz and carbonaceous matter. The Byuksong and Songseok ores show metamorphic textures such as porphyroblastic, and pressure solution textures, and have low whiteness values, The ${\delta}^{18}O$ values of pyrophyllite from the Cheonbulsan and Dumyong mines in the Yangsan area, and the Dado and Nowha mines in the Dado-Haenam areas were in the range of 0.23~5.36%,. The relatively low 8 180 values provide conclusive evidence for hydrothermal activity in these deposits. The ${\delta}^{18}O$ values of pvrophvllite from the Songseok mine in the Whasoon area were measured as 6.70-8.13%, and these higher ${\delta}^{18}O$ values suggest that the Songseok ore deposit have been probably subjected to metamorphism. ${\delta}^{34}$S(pyrito) values from the Cheonbulsan, Dumyong, Youkwang, Dongrae, Sungjin and Milyang deposits in the Yangsan-Milyang areas, and the Dado pyrophyllite deposits in the Dado area range from -5.8 to 2.7%, which means that the pyrite sulfur could be of igneous origin. ${\delta}^{34}$S(pyrito) from the Nohwa mine in the Haenam area is, however, measured as -12.4%" implying the contamination of sulfur derived from the sedimentary country rocks. All of the studied high alumina deposits in the Yangsan-Milyang areas and the Dado-Haenam areas were hydrothermal in origin, whereas the Byuksong and Songseok ore deposits in the Whasoon area were probably of metamorphic origin.

  • PDF

Hydrothermal Alteration of Miryang Pyrophyllite Deposit (밀양납석광상의 열수변질 특징)

  • Moon, Dong Hyeok;Kwak, Kyeong Yoon;Lee, Bu Yeong;Koo, Hyo Jin;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.265-277
    • /
    • 2015
  • Hydrothermal alteration patterns and environment are studied by mineral assemblages and chemical analyses of surface and core samples from Miryang pyrophyllite deposit. The alteration zones of this deposit can be divided into three zones on the basis of mineral assemblage; advanced argillic, phyllic, and propylitic zone. Advanced argillic zone mainly consists of pyrophyllite-dickite (-quartz) and corresponds to principal mining ore. The common mineral assemblage of phyllic zone and propylitic zone are sericite-quartz-dickite and chlorite-quartz, respectively. Horizontal and vertical alteration patterns and major element geochemistry indicate that pyrophyllite ores have been formed several times by hydrothermal alteration. And it also suggests that the huge ore bodies may be extended from the deeper part of recent quarries to the south-southeastern direction. The paragenesis of ore minerals and polytype (2M) suggest that ore deposit was formed at about $300-350^{\circ}C$.

A Study on the Ceramic and Clay Mineral Resources and its Genesis in Cheonnam Province and Hadong Area (전남(全南)과 하동지역(河東地域)에서 산출(産出)하는 요업(窯業) 및 점토(粘土) 광물자원(鑛物資源)과 성인(成因)에 관(關)한 연구(硏究))

  • Park, Hong Bong;Park, Bae Young;Shin, Sang Eun;Huh, Min
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.1-15
    • /
    • 1988
  • This is a study on the mineral compositions, SK numbers of refractoriness and the genesis of the clay mineral deposits in Cheonnam Province and Handong area. 1. Jindo kaolin deposits: Chief clay minerals of the deposits are kaolinite, quartz and alunite. The SK number of the ore is from $34^+$(the highest) to 27(the lowest). On the genesis of the deposits some geologists believe that the deposits were formed by the alteration of the siliceous tuff. But the deposits seems to be formed by the hydrothermal alteration of the rhyolite lava beds. This area is formed by alternative beds of tuff; and kaoline deposits. 2. Hadong area: Chief mineralogy of Hadong kaolin area is $10{\AA}$ halloysite and kaolinite. The SK number of some of the ore is up to $36^+$. The theoretic SK number of kaolinitic composition is 35. So one of the highest alumina minerals of gibbsite is formed in the ores of $36^+$ SK numbers. 3. Hampyong kaolin deposits: Most of kaolin has black color. The chief minerals are kaolinite, quartz and muscovite. Some of the kaoline contains rutile crystals. SK number ranges from 30 to 17. The kaolin deposit is formed by the transported sedimentation in lower part of the seashore. 4. Jangsan kaoline deposits: Chief minerals of the kaolin is kaolinite, quartz and muscovite. Some kaoline contains small crystals of pyrite. This area consists almost of the tuffs. Kaolin deposits also would be formed by the alteration of the tuffs. 5. Nohwado pyrophyllite deposits: Quartz and pyrophyllite are chief minerals. SK number of the ore ranges from 32 to 30. The pyrophyllite deposits would be formed by the hydrothermal alteration of the rhyolitic lava beds. This area consists of alterative beds of tuffs and rhyolitic lavas. 6. Songsuk pyrophyllite deposits: Chief minerals are quartz, kaolinite, pyrophyllite and iron oxides. In the pyrophyllite deposits egg-like inclusions of diaspore and kaolinite in composition. This area almost consists of tuffs. Several faults are developed and along the fault the tuff would begin to alter to pyrophyllite and some parts to diaspore and kaolinite nodules by the acts of hydrothermal solution.

  • PDF

Mineralogical Study on High Aluminous meta-Claystone form the Chununsan Formation (천운산층내 고알루미나광석에 대한 광물학적 연구)

  • 이동진;이성록
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.48-62
    • /
    • 1988
  • The high aluminous meta-claystones are thinly bedded to metasedimentary rocks which belong to Chununsan Formation. Major high aluminous minerals in the ores ae andalusite, kaolinite and pyrophyllite. The other significant constituents are sericite, chloritoid and carbonaceous material, etc. Ores can be classified into 4 types according to mineral compositions; andalusite- kolinite-sericite, andalusite-kaolinite-chloritoid, kaolinite-sericite-pyrophyllite, and kaolinite-chloritoid-sericite ore. The formation of ore minerals are resulted from sedimentary, diagenetic, metamorphic and hydrothermal processes. Andalusite are formed by low-grade metamorphism under the conditions of $400~500^{\circ}C$ and below 4kb, from the view-point of mineral stability field, illite-mica crystallinity and graphitization degree of the carbonaceous material. Andalusites are partly altered to kaolinite, forming major mineral phase in the ores.

  • PDF