• Title/Summary/Keyword: pyrolysis

Search Result 1,529, Processing Time 0.031 seconds

Pyrolytic Behavior of Propylene Glycol and glycerine (Propylene Glycol과 glycerine의 열본해 특성)

  • Lee Jae-Gon;Lee Chang-Gook;Baek Shin;Jang Hee-Jin;Kwag Jae-Jin;Lee Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.31-39
    • /
    • 2005
  • This study was conducted to evaluate the characterization of the pyrolysis products of propylene glycol(PG) and glycerine alone and together with tobacco. The weight change of the samples during the pyrolysis was measured by a thermal analyzer(STD-2960). The pyrolysis products were determined by GC/MS after pyrolysis using a curie-point pyrolyzer(CPP, $220^{\circ}C,\;420^{\circ}C,\;650^{\circ}C,\;and\;920^{\circ}C$) and a double-shot pyrolyzer(DSP, $220^{\circ}C,\;420^{\circ}C,\;650^{\circ}C,\;and\;800^{\circ}C$), respectively. The pyrolysis products from tobacco with and without the addition of PG($2\%$) and glycerine($2\%$ were assayed for its pyrolytic behavior. The results showed that a dramatic change in weight of PG and glycerine was observed at $175^{\circ}C\;and\;249^{\circ}C$, respectively. PG and glycerine showed different patterns for their pyrolysis products according to the method of pyrolysis. Namely, the change rate in pyrolysis with DSP was much higher than that of CPP at above $650^{\circ}C$. The major pyrolysis products of PG were propene, acetaldehyde, propanal, and acetol; the major pyrolysis products of glycerine were 2-propenal, 2-propenol, acetol, and acetic acid. In the pyrolysis experiments of tobacco added PG and glycerine, the pyrolysis products of PG and glycerine weren't detected additionally, except for diethyleneglycol diacetate. From these results, it can be concluded that the PG and glycerine added to tobacco would not be expected to pyrolyse extensively during smoking.

A Mathematical Model for Pyrolysis Processes During Unforced Smoldering of Cigarette (비흡입시 연소하는 담배의 열분해 작용에 관한 수학적 모델)

  • 이성철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.17 no.2
    • /
    • pp.160-169
    • /
    • 1995
  • A mathematical model for the pyrolysis processes during unforced smoldering of cigarette was proposed in this study by analyzing the physical model of the smoldering cigarette (including the establishment of burning front between burning zone and pyrolysis zone, and analyzing the involvement of main factors such as pyrolysis of virgin tobacco, evaporation of water, and internal heat transport in the processes). Thermal conduction of cigarette paper and convective and radiative heat transfer at the outer surface were also considered via the thermal resistance law for the competitive heat transfer mechanisms. The governing partial differential equations were solved using an integral method. Model predictions of smoldering speed, or linear burn rate, as well as temperature and density profiles in the pyrolysis zone for different kinds of cigarettes were found to be close to the experimental data in the literature (Muramatsu, 1981). The model provides a relatively fast and efficient way to simulate the pyrolysis processes and offers a practical tool for exploring important parameters for a smoldering cigarette, such as blended tobacco composition, properties of cigarette paper, and heat flux from the burning zone to the pyrolysis zone.

  • PDF

Liquefaction Characteristics of HDPE, PP and PS by Isothermal Pyrolysis (HDPE, PP 및 PS의 등온열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Park, Su-Yul;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.198-205
    • /
    • 2002
  • Isothermal pyrolysis of high density polyethylene(HDPE), polypropylene(PP) and polystyrene(PS) was performed at $450^{\circ}C$, respectively. The effect of pyrolysis time on yield and product composition was investigated. Conversion and liquid yield obtained during HDPE pyrolysis continuously increased with time up to 80minutes, but those of PP and PS did not largely change after 35minutes. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The major liquid product of HDPE pyrolysis was light oiH34 wt.% based on the amount of HDPE treated) and the amounts of the other liquid ingredients(gasoline, kerosene and wax) were almost the same. On the other hand, the pyrolysis of PP produced 27 wt.% gasoline, 22 wt.% kerosene, 24 wt.% light oil and 13wt.% wax, and the pyrolysis of PS produced 56 wt.% gasoline, 12 wt.% kerosene, 9 wt.% light oil and 13 wt.% wax.

Preparation of Green-Light Emitting BAM:Mn Phosphor Particles by High Temperature Spray Pyrolysis (고온 분무열분해 공정에 의한 녹색 발광의 BAM:Mn 형광체 합성)

  • Ju Seo Hee;Koo Hye Young;Kim Do Youp;Kang Yun Chan
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.496-502
    • /
    • 2005
  • Green-light emitting $BaMgAl_{10}O_{19}:Mn^{2+}$ (BAM:Mn) phosphor particles were prepared by spray Pyrolysis. The effect of reactor temperature and flow rate of carrier gas in the spray Pyrolysis on the morphology, crystallinity and photoluminescence characteristics under vacuum ultraviolet were investigated. The morphology of the as-Prepared Particles obtained by spray Pyrolysis had spherical shape and non-aggregation characteristics regardless of the reactor temperature. The spherical shape of the as-prepared Particles obtained by spray pyrolysis at low temperature disappeared after Post-treatment. On the other hand the as-Prepared Particles obtained by spray Pyrolysis at $1600^{\circ}C$ maintained spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ for 3 h under reducing atmosphere. The BAM:Mn Phosphor Particles Prepared by spray Pyrolysis at different reactor temperatures had pure crystal structure and high photoluminescence intensities under vacuum ultraviolet after post-treatment. BAM:Mn phosphor particles prepared by spray Pyrolysis at low How rate of carrier gas had complete spherical shape and filed morphology and high photoluminescence intensity after post-treatment under reducing atmosphere.

CPFD Simulation for Fast Pyrolysis Reaction of Biomass in a Conical Spouted Bed Reactor using Multiphase-particle in Cell Approach (Multiphase-Particle in Cell 해석 기법을 이용한 원뿔형 분사층 반응기 내 바이오매스의 급속열분해 반응 전산해석)

  • Park, Hoon Chae;Choi, Hang Seok
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.7
    • /
    • pp.685-696
    • /
    • 2017
  • This study focuses on computational particle fluid dynamics (CPFD) modeling for the fast pyrolysis of biomass in a conical spouted bed reactor. The CPFD simulation was conducted to understand the hydrodynamics, heat transfer, and biomass fast pyrolysis reaction of the conical spouted bed reactor and the multiphase-particle in cell (MP-PIC) model was used to investigate the fast pyrolysis of biomass in a conical spouted bed reactor. A two-stage semi-global kinetics model was applied to model the fast pyrolysis reaction of biomass and the commercial code (Barracuda) was used in simulations. The temperature of solid particles in a conical spouted bed reactor showed a uniform temperature distribution along the reactor height. The yield of fast pyrolysis products from the simulation was compared with the experimental data; the yield of fast pyrolysis products was 74.1wt.% tar, 17.4wt.% gas, and 8.5wt.% char. The comparison of experimental measurements and model predictions shows the model's accuracy. The CPFD simulation results had great potential to aid the future design and optimization of the fast pyrolysis process for biomass.

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model (Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석)

  • Sangkyu, Choi;Yeonseok, Choi;Yeonwoo, Jeong;Soyoung, Han;Quynh Van, Nguyen
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.

A Study on the Pyrolysis and Combustion Characteristics of Solid Waste in a Pilot scale Pyrolysis Melting Incinerator (Pilot 규모의 열분해 용융 소각 시스템에서의 열분해 및 연소 특성 연구)

  • Yu, Tae-U;Yang, Won;Park, Ju-Won;Kim, Bong-Keun;Lee, Gi-Bang;Kim, Hi-Yeol;Park, Sang-Shin;Jeon, Keum-Ha
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.168-174
    • /
    • 2006
  • A pilot scale (200kg/hr) pyrolysis melting incineration system is designed and constructed in Korea Institute of Industrial Technology. The incineration process is composed of pyrolysis, gas combustion, ash melting, gas stabilization, waste heating boiler, and bag filter. For each unit process, experimental approaches have been conducted to find optimal design and operating conditions. Especially, a pyrolysis is very important process in that it is a way of energy recirculation and minimizing the waste products. This paper presents major results of the most efficient operating conditions in a pilot scale pyrolysis melting incinerator.

  • PDF

Hepatotoxicity Assessment of Derived Product from Pyrolysis System for Waste Plastic Recycling (폐플라스틱 재활용을 위한 열분해공정 파생물질의 간독성 평가)

  • Shin Hea Soon
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.201-206
    • /
    • 2004
  • Recently, waste plastic recycling technology is transforming from Incineration system to pyrolysis gasification system which can derive the resources from environmental waste and charge no more environmental burden to nature. The present study was carried out to investigate the potential acute toxicity of derived product of pyrolysis gasifications system for recycling of waste plastic by a single oral dose in Sprague-Dawley Rats. In order to evaluate the hepatotoxic effects of derived product of pyrolysis gasification system, activities of serum transaminase were measured in rats. No related changes in survivals, clinical signs and the ratio of the liver to body weights of rats were monitored. The results showed that the single oral administration of material of pyrolysis system for recycling of waste plastic did not induce any toxic effect at orally single dose level of 0 and 100, 200, 400, 800mg/kg body weight in rats. We could not find out any significant tocxicity induced by single oral administrate of material of pyrolysis system for recycling of waste plastic.

Morphology and Photoluminescence Characteristics of Halophosphate Phosphor Particles by Spray Pyrolysis and Flame Spray Pyrolysis

  • Sohn, Jong-Rak;Kang, Yun-Chan;Park, Hee-Dong;Yoon, Soon-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.803-806
    • /
    • 2002
  • Flame spray pyrolysis was applied to improve the photoluminescence characteristics of blue-emitting $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles with high brightness for the application to LED phosphor. $Sr_5(PO_4)_3Cl:Eu^{2+}$ prepared from conventional spray pyrolysis had poor PL intensity than that of commercial products under long-wavelength ultraviolet(UV). $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles prepared by flame spray pyrolysis had PL intensity as same as that of commercial products under long-wavelength UV. Hollow morphology and porous structure of the particles prepared by the flame spray pyrolysis disappeared after posttreatment. Even though the $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles prepared by the flame spray pyrolysis had irregular shape, the particles had dense structure and clear surface property.

  • PDF

Analysis of Poly(Ethylene-co-Vinyl Acetate) Using Off-line Pyrolysis

  • Choi, Sung-Seen;Kim, Eunha
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • Poly(ethylene-co-vinyl acetate) (EVA) was pyrolyzed to eliminate acetic acid of VA unit using off-line pyrolysis, and the deacetylated EVA was analyzed infrared spectroscopy (IR) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). EVA film for deacetylation was prepared by solution casting on aluminum foil and it was pyrolyzed at low temperature of $300^{\circ}C$ in the off-line pyrolysis apparatus. After deacetylation, carbon-carbon double bond (C=C) was formed by 1,2-elimination of the VA unit in the EVA backbone. Most of C=C bonds were trans-1,4-unit and 1,2-unit was also observed. Presence of the 1,2-unit in deacetylated EVA indicates that terminal or branch VA units exist in the raw EVA. Py-GC/MS chromatogram of deacetylated EVA displayed much smaller acetic acid and much more abundant other pyrolysis products than that of raw EVA, which means that the pyrolysis efficiency and separation condition were improved.