• Title/Summary/Keyword: pyritic sulfur

Search Result 2, Processing Time 0.015 seconds

Microbial Desulfurization of Coal by Iron-Oxidizing Bacteria Thiobacillus ferrooxidans in packed beds (철산화 박테리아 Thiobacillus ferrooxidans를 이용한 충전탑 반응기에서의 석탄의 생물학적 탈황)

  • 류희욱
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.124-130
    • /
    • 1999
  • To evaluate the technical of microbial coal desulfurization during the storage in coal dumps, microbial pyrite oxidation in a packed column reactor with Thiobacillus ferrooxidans has been investigated. For microbial desulfurization in a packed reactor system, coal particle size over 1.0 mm with uniform size distribution seems to be most suitable as fas as drainage behavior and accessability of pyrite are concerned. When coal samples of 1∼2 and 2∼4 mm particle size were size were used, about 32∼42% of pyritic sulfur was removed within 70 days. The rate of pyritic sulfur oxidation was in the range of 348∼803 mg S/kg coal ·d, and the sulfur removal rates in packed columns were about 15∼25% of those in suspension cultures. Without any circulation of liquid medium, microbial coal desulfurization could be possible by the inoculation of T. ferrooxidans along on the coal dump. It was concluded that a microbial percolation process is one of possible processes for the desulfurization of high sulfur coal during a long-term storage.

  • PDF

Effect of Operating Parameters on Microbial Desulfurization of Coal by Acidithiobacillus ferrooxidans. (Acidithiobacillus ferrooxidans에 의한 생물학적 석탄탈황에 미치는 조업인자의 영향)

    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.400-407
    • /
    • 2003
  • In microbial coal desulfurization process (MCDP) by using Acidithiobacillus ferrooxidans, the effect of process variables on pyritic sulfur removal efficiency has been investigated. The inhibitory effect of toxic materials contained in coal matrix on the activity of desulfurizing bacteria have been evaluated in coal extracts, and the results showed that the method was useful to evaluate the applicability of a coal which is to be desulfurization to MCDP. The removal efficiency increased with decreasing particle size and decreases with increasing pulp density, but has no significant influence of particle size and pup densities at high pulp densities over 20 wt%. The mass transfers of gaseous nutrients such as oxygen and carbon dioxide into coal slurry with various pulp densities and coal particle size has been studied in an airlift bioreactor. Mass transfer coefficient was independent of pulp density in coal slurry with fine particle below 175 $\mu\textrm{m}$, but significantly decreased with increasing pulp density over 225 $\mu\textrm{m}$. The coal particles over 575 $\mu\textrm{m}$ were significantly settled to the bottom of bioreactor resulting in poor mixing. Considering mass transfer, pulp density and coal mixing, an optimal size of coal particle for the microbial coal desulfurization process seems to be about 500 $\mu\textrm{m}$.