• Title/Summary/Keyword: pyriboles

Search Result 2, Processing Time 0.019 seconds

High-resolution Transmission Electron Microscopy of Tremolite-to-Talc Reaction at the Dongyang Talc Deposit (동양 활석광상에서의 투각섬석-활석 반응에 관한 고분해능 투과전자현미경학적 연구)

  • 안중호;이인성;김준모
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.84-95
    • /
    • 2000
  • Tremolite crystals from the Dongyang talc deposit were studied using high-resolution transmission electron microscopy (HRTEM) to characterize the tremolite-to-talc reaction. [001] HRTEM images of tremolite show intergrowths of wide-chain pyriboles and talc; talc is the primary alteration product of tremolite, and triple-chain structures occur sparsely. The boundaries between tremolite and talc are commonly well defined by (010) and (100) interfaces. (001) talc layers are parallel to (100) of tremolite, and the interfaces between tremolite and talc appear to be coherent in HRTEM images, indicating that most talc laters formed directly from tremolite by a gydration reaction. However, some talc formed along (110) of tremolite, and talc layers are not extended from (010) of tremolite, suggesting that part of talc in the deposit was produced through a dissolution-precipitation mechanism. Carbonate minerals are also associated with tremolite and talc. Common replacement of dolomite by calcite indicates that the tremolite-to-talc reaction results in remnant Ca, which was eventually consumed to replace dolomite to form clacite. Some Mg Produced by dolomite during reaction to calcite was apparently utilized to form talc, because talc formation from tremolite requires extra Mg. Although talc could be formend directly from dolomite, extensive alteration of tremolite to talc suggests that part of talc of the deposit was produced from tremolite that was formed by dolomite reaction during an early stage metamorphism.

  • PDF

Mineralogical Characterization of the Chuncheon Nephrite: Mineral Facies, Mineral Chemistry and Pyribole Structure (춘천 연옥 광물의 광물학적 특성 : 광물상, 광물 화학 및 혼성 격자 구조)

  • Noh, Jin Hwan;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.57-79
    • /
    • 1993
  • Chuncheon nephrite, which was formed by the polymetasomatic alteration of dolomitic marble, can be classified into pale green, green, dark green, and grey types on the basis of their occurrence, mineralogical and textural characteristics. The nephrites consist obiefly of fibrous or hairlike(length/width ratio>10) cryptocrystalline(crystal width < $2{\mu}m$) tremolite, and include less amounts of micro-crystalline diopside, calcite, clinochlore, and sphene as impurities. The oriented and rather curved crystal aggregate, of nephritic tremolite are densely interwoven, resulting in a massive-fibrous texture which may explain the characteristic toughness of nephritic jade. The characteristic greenish color of the nephrite may be preferably related to Fe rather than Cr and Ni. However, the variation of color and tint in the Chuncheon nephrite also depends on the mineralogical and textural differences such as crystallinity, texture, and impurities. The chemical composition of the nephritic tremolite is not stoichiometric and rather dispersed especially in the abundances of Al, Mg, and Ca. Al content and Mg/Ca ratio for the nephritic tremolite are slightly increased with deepening in greenish color of the nephrite. Fe content in the nephritic tremolite is generally very low, but comparatively richer in the dark green nephrite. In nephritic tremolite, wide-chain pyriboles are irregularly intervened between normal double chains, forming a chain-width disorder. Most nephritic tremolites in the Chuncheon nephrite show various type of chain-width defects such as triple chain(jimthompsonite), quintuple chain (chesterite), or sometimes quadruple chain in HRTEM observations. The degree of chain-width disorder in the nephritic tremolite tends to increase with deepening in greenish color. Triple chain is the most common type, and quadruple chain is rarely observed only in the grey nephrite. The presence of pyribole structure in the nephritic tremolite is closely related to the increase of Al content and Mg/Ca ratio, a rather dispersive chemical composition, a decrease of relative intensity in (001) XRD reflection, and an increase in b axis dimension of unit cell. In addition, the degree and variation of chain-width disorder with nephrite types may support that an increase of metastability was formed by a rapid diffusion of Mg-rich fluid during the nephrite formation.

  • PDF