• Title/Summary/Keyword: puuD

Search Result 1, Processing Time 0.017 seconds

Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four Bacillus spp.

  • Jang, Mihyun;Jeong, Do-Won;Heo, Ganghun;Kong, Haram;Kim, Cheong-Tae;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.447-455
    • /
    • 2021
  • Strains of four Bacillus spp. were respectively inoculated into sterilized soybeans and the free amino acid profiles of the resulting cultures were analyzed to discern their metabolic traits. After 30 days of culture, B. licheniformis showed the highest production of serine, threonine, and glutamic acid; B. subtilis exhibited the highest production of alanine, asparagine, glycine, leucine, proline, tryptophan, and lysine. B. velezensis increased the γ-aminobutyric acid (GABA) concentration to >200% of that in the control samples. B. sonorensis produced a somewhat similar amino acid profile with B. licheniformis. Comparative genomic analysis of the four Bacillus strains and the genetic profiles of the produced free amino acids revealed that genes involved in glutamate and arginine metabolism were not common to the four strains. The genes gadA/B (encoding a glutamate decarboxylase), rocE (amino acid permease), and puuD (γ-glutamyl-γ-aminobutyrate hydrolase) determined GABA production, and their presence was species-specific. Taken together, B. licheniformis and B. velezensis were respectively shown to have high potential to increase concentrations of glutamic acid and GABA, while B. subtilis has the ability to increase essential amino acid concentrations in fermented soybean foods.