• Title/Summary/Keyword: purple perilla

Search Result 10, Processing Time 0.025 seconds

Phytonutrient Profile of Purple Perilla (Perilla frutescens var. crispa) Seeds

  • Bhandari, Shiva Ram;Lee, Ju-Kyong;Lee, Young-Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.199-204
    • /
    • 2011
  • To characterize phytonutrients, the seeds of 12 purple Perilla (Perilla frutescens var. crispa) accessions collected from Korea and Japan were used for quantitative analysis of tocopherols, phytosterols, squalene and fatty acids. The average tocopherol, squalene and phytosterols contents were 12.2 mg $100g^{-1}$, 3.99 mg $100g^{-1}$ and 77.20 mg $100g^{-1}$, respectively. Among 4 tocopherol (T) isomers (${\alpha}$-T, ${\beta}$-T, ${\gamma}$-T, and ${\delta}$-T), ${\gamma}$-T was present in the highest quantity (11.03 mg $100g^{-1}$) with the least variation (CV = 13.7%), while ${\beta}$-T was present in lowest quantity (0.25 mg 1$100g^{-1}$). Compared to campesterol (4.36 mg $100g^{-1}$) and stigmasterol (13.32 mg $100g^{-1}$), ${\beta}$-sitosterol exhibited higher quantity (59.51 mg $100g^{-1}$) with 9.5% of variation. The major fatty acids were unsaturated fatty acids such as linolenic (61.5%), linoleic (17.3%), and oleic (9.9%) acids compared to saturated ones: palmitic (7.6%) and stearic (3.7%) acids. When Korean and Japanese accession were compared, almost no difference in content could be observed, while more variation as evaluated by CV (%) could be observed in Japanese accession in most phytonutrients suggesting wider genetic variation of purple Perilla in Japan. Presence of all above-mentioned phytonutrient compounds strongly suggested health beneficial value of purple Perilla seeds.

Absence of Tocotrienol Form of Vitamin E in Purple Perilla (Perilla frutescens var. acuta Kudo) Seeds Confirmed by Comparative Analysis Using HPLC and GC (GC 및 HPLC 비교분석에 기초한 차조기 종실내 tocotrienol 부재의 평가)

  • Lee, Young-Sang;Kim, Min-Kyoung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.115-120
    • /
    • 2008
  • Lipid soluble vitamin E consists of tocopherols and tocotrienols depending upon double bonds in phytyl side chains attached to chromanol ring. Recent reports on antioxidative, anticancer, and cholesterol-lowering effects of tocotrienols have increased researches and commercialization of tocotrienols. Purple perilla (Perilla frutescens var. acuta Kudo) has been reported as a plant containing tocotrienols along with tocopherol forms of vitamin E based upon normal phase HPLC analysis. To confirm the existence or absence of tocotrienol form of vitamin E in purple perilla, comparative analysis using HPLC, GC/FID, and GC/MSD has been conducted for 14 purple perilla genetic accessions collected from Korea and Japan. Normal phase HPLC analysis showed ${\alpha}-$, ${\beta}-$, ${\gamma}-$, and ${\delta}-tocopherols$ along with peaks with retention times quite similar to ${\beta}-$ and ${\gamma}-tocotrienols$. Same purple perilla samples, analysed by GC exhibited ${\alpha}-$, ${\beta}-$, ${\gamma}-$, and ${\delta}-tocopherols$ quantitatively equivalent to HPLC results. However, no peaks for ${\beta}-$ and ${\gamma}-tocotrienols$ could be observed and unknown two peaks of similar retention times with ${\beta}-$ and ${\gamma}-tocotrienols$ were identified not corresponding tocotrienols by GC/MSD. These results suggest the absence of tocotrienol form of vitamin E in purple perilla as well as the necessity of using GC-based qualitative and quantitative vitamin E analysis to avoid misinterpretation of peaks with similar retention times as tocotrienol isomers when analysed by an HPLC.

Binding Capacity of Chitin and Chitosan to Anthocyanin Pigment Isolated from Purple Perilla Leaves

  • Chang, Eun-Ju;Park, Sang-Won;No, Hong-Kyoon
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • The binding capacity of chitin and chitosan to anthocyanin pigmentss isolated from purple perilla leaves was inves-tigated. The pigment binding capacity increased with increasing pigment concentrations and decreasing pH without being affected by reaction temperature and particle sizes. Regression analysis revealed significantly high corre-lations between pigment binding capacity of chitin and chitosan and pigment concentration at ranges of 25-100 mg of pigment/g of sample, After 1 hr settling, release of pigment from pigmented chitin and chitosan increased with increasing pH, up to 24.9% and 17.4%, respectively, at pH 9. In general, pigment binding capacity of chitosan was higher than that of chitin. There results suggest that chitosan may be useful as a potential adsorbent capable of stabilizing anthocyanin pigment.

  • PDF

Tocotrienol and Tocopherol Content in Various Plant Seeds (몇 가지 작물 종실의 Tocotrienol과 Tocopherol 함량)

  • 박경열;강창성;이용선;이영현;이영상
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.207-210
    • /
    • 2004
  • Vitamin E, consisting of tocotrienols ($\textrm{T}_3$) and tocopherols ($\textrm{T}$) is well-known nutraceutical compound for its antioxidant, anticancer and cholesterol-low-ering activity. The contents of alpha ($\alpha\textrm{-}$), beta ($\beta\textrm{-}$), gamma ($\gamma\textrm{-}$) and delta ($\delta\textrm{-}$) tocotrienols and tocopheyols in some Korean crop seeds were evaluated by using HPLC after saponification. Among tested crops, total 73 contents (mg/110g) were purple perilla 25.06, barley 4.50, corn 3.54, iris 3.04, adlay 2.58, safflower 0.12. Other crops including 5 soybean cultivars, kidneybean, sunflower and perilla contained no tocotrienols. Regarding $\textrm{T}_3$ isomers, $\beta\textrm{-}$$\textrm{T}_3$ were rut observed in adlay and corn, and $\delta$-$\textrm{T}_3$ were not in iris aid purple perilla, while safflower exhibited no detectable $\alpha\textrm{-}$, $\beta\textrm{-}$ and $\delta\textrm{-}$$\textrm{T}_3$. Total T contents (mg/100g) were high in iris (51.82), perilla (40.90), soybean (34.11), sunflower (20.88), and they all contained all $\alpha\textrm{-}$, $\beta\textrm{-}$, $\gamma\textrm{-}$ and $\delta\textrm{-}$ tocopterol isomers. Total Vit E contents (T + $\textrm{T}_3$, mg/100g) were iris 54.86, purple perilla 41.80, perilla 40.90, soybean 34.11, sunflower 20.88, safflower 14.73, corn 11.49, evening-primrose 10.07, barley 7.48, adlay 6.24 and kidneybean 5.27.

Purple perilla frutescens extracts containing α-asarone inhibit inflammatory atheroma formation and promote hepatic HDL cholesterol uptake in dyslipidemic apoE-deficient mice

  • Sin-Hye Park;Young Eun Sim;Min-Kyung Kang;Dong Yeon Kim;Il-Jun Kang;Soon Sung Lim;Young-Hee Kang
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1099-1112
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Dyslipidemia causes metabolic disorders such as atherosclerosis and fatty liver syndrome due to abnormally high blood lipids. Purple perilla frutescens extract (PPE) possesses various bioactive compounds such as α-asarone, chlorogenic acid and rosmarinic acid. This study examined whether PPE and α-asarone improved dyslipidemia-associated inflammation and inhibited atheroma formation in apolipoprotein E (apoE)-deficient mice, an experimental animal model of atherosclerosis. MATERIALS/METHODS: ApoE-deficient mice were fed on high cholesterol-diet (Paigen's diet) and orally administrated with 10-20 mg/kg PPE and α-asarone for 10 wk. RESULTS: The Paigen's diet reduced body weight gain in apoE-deficient mice, which was not restored by PPE or α-asarone. PPE or α-asarone improved the plasma lipid profiles in Paigen's diet-fed apoE-deficient mice, and despite a small increase in high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL)-cholesterol, and very LDL were significantly reduced. Paigen's diet-induced systemic inflammation was reduced in PPE or α-asarone-treated apoE-deficient mice. Supplying PPE or α-asarone to mice lacking apoE suppressed aorta atherogenesis induced by atherogenic diet. PPE or α-asarone diminished aorta accumulation of CD68- and/or F4/80-positive macrophages induced by atherogenic diet in apoE-deficient mice. Treatment of apoE-deficient mice with PPE and α-asarone resulted in a significant decrease in plasma cholesteryl ester transfer protein level and an increase in lecithin:cholesterol acyltransferase reduced by supply of Paigen's diet. Supplementation of PPE and α-asarone enhanced the transcription of hepatic apoA1 and SR-B1 reduced by Paigen's diet in apoE-deficient mice. CONCLUSIONS: α-Asarone in PPE inhibited inflammation-associated atheroma formation and promoted hepatic HDL-C trafficking in dyslipidemic mice.

Growth, Deficiency Symptom and Tissue Nutrient Contents of Leaf Perilla (Perilla frutesens Britt) Influenced by Phosphorus Concentrations in Fertigation Solution (인산 시비농도가 잎들깨의 생육, 결핍증상 및 무기원소 함량에 미치는 영향)

  • Choi, Jong-Myung;Park, Jong-Yoon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.358-364
    • /
    • 2007
  • This study was carried out to investigate the effect of phosphorus concentrations in fertilizer solution on growth and development of nutrient deficiency in leaf perilla (Perilla frutesens). The nutrient concentrations in above ground plant tissue, petiole sap and soil solution of root media were also determined. Phosphorus deficiency resulted in a slow growth, lustreless leaves, suffused purple tining in older leaves and falling prematurely. Elevation of P concentrations in fertilizer solution increased the crop growth at 75 days after transplanting. The fresh weight in 0, 0.5 and 4.0 mM treatments were 0.48 g, 9.28 g, and 25.5 g, respectively, and dry weights were 0.06 g, 1.46 g and 4.13 g, respectively. The P concentrations in above ground plant tissue and petiole sap in 4.0 mM treatment were 1.78% and $2.040mg{\cdot}kg^{-1}$, respectively, at 75 days after transplanting. The soil P concentration in 4.0 mM treatment was $1.26mg{\cdot}kg^{-1}$ when it was determined by the 1:2 (sample:water) method. These results indicated that P concentrations higher than 0.3% in above ground plant tissue, $900mg{\cdot}kg^{-1}$ in petiole sap, and $0.57mg{\cdot}kg^{-1}$ in soil solution should be maintained to ensure proper growth of leaf perilla (Perilla frutesens).

Using Phenolic Compounds and Some Morphological Characters as Distinguishing Factors to Evaluate the Diversity of Perilla Genetic Resources

  • Assefa, Awraris Derbie;Jeong, Yi Jin;Rhee, Ju-hee;Lee, Ho-Sun;Hur, On-Sook;Noh, Jae-Jong;Ro, Na-Young;Hwang, Ae-Jin;Sung, Jung-Sook;Lee, Jae-Eun
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2020
  • The objectives of this study were to evaluate total phenolic content (TPC) and individual phenolic compounds in leaves of perilla genetic resources, assess whether they could be used as distinguishing factor among germplasms, and evaluate their relationship with some quantitative and qualitative morphological characters. TPC and individual phenolic compounds were determined using Folin-Ciocalteu method and UPLC-PDA system, respectively. Wide variations in TPC (7.99 to 133.70 mgGAE/g DE), rosmarinic acid (ND to 21.05 mg/g DE), caffeic acid (ND to 1.17 mg/g DE), apigenin-7-O-diglucuronide (ND to 2.21 mg luteolin equivalent (mgLUE)/g DE), scutellarein-7-O-glucuronide (ND to 5.25 mg LUE/g DE), and apigenin-7-O-glucuronide (ND to 2.81 mg LUE/g DE) were observed. Intensities of green pigment at abaxial and adaxial leaf surfaces were positively correlated with phenolic compounds whereas leaf length and width had negative correlation. Purple pigmented accessions were shorter in leaf length and width but exhibited higher amount of phenolic compounds compared to green pigmented accessions in most cases. Leaf shape was not related with content of phenolic compounds, color of leaves, and length/width of leaves. TPC and individual phenolic compounds along with morphological characters could be useful distinguishing factors for perilla genetic resources.

A New Perilla Cultivar for Edible Seed 'Anyu' with Early Maturity and High Oil Content (성숙이 빠르고 기름함량이 높은 종실용 들깨 신품종 '안유')

  • Lee, Myoung-Hee;Ha, Tae-Joung;Jung, Chan-Sik;Pae, Sug-Bok;Hwang, Jung-Dong;Han, Sang-Ik;Park, Chang-Hwan;Park, Keum-Yong;Lee, Suk-Ki;Park, Chung-Berm
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.218-221
    • /
    • 2010
  • 'Anyu', a perilla (Perilla frutescens (L.) Britton) cultivar for edible seed was developed by the Department of Functional Crop Science, National Institute of Crop Science, RDA in 2008. It was originated from the cross between a pedigree of YCPL1824 as a female and SF9225-3-1 as a male parent in 1998. 'Anyu' can be characterized by purple flower color and brown grain color. 'Anyu' showed semi-dwarft type with 120 cm height, and has lodging tolerance. Maturing date of 'Anyu' was September 24, which is 15 days faster than that of 'Saeyeopsil'. The early maturity of this new cultivar showed a great advantage to various planting system with other crops. This new cultivar has high oil content (45%) and high linolenic acid in the fatty acid composition. The yield potential of 'Anyu' was about 0.9 ton/1ha in the regional yield trial.

Oriental medicines with anti-anaphylactic effect

  • Jeong, Hyun-Ja;Hong, Seung-Heon;Kim, Hyung-Min
    • Advances in Traditional Medicine
    • /
    • v.4 no.3
    • /
    • pp.125-136
    • /
    • 2004
  • The pharmacological mechanisms of most Oriental medicines have not been clearly defined in spite of their effective use in treating many diseases throughout the world. Many Oriental medicines have been used against various allergic diseases for generations, and still occupy an important place in traditional medicine in far eastern countries including Korea. It is also still unclear how Oriental drugs prevent allergic disease in vivo or in vitro models. Some Korean folk medicine inhibited the mast cell-mediated allergic reaction. This review summarizes the effective folk medicine in experimental effect on systemic or local anaphylaxis reaction. Potential anti-anaphylactic folk medicines include: Poncirus trifoliata; Siegesbeckia glabrescence; Solanum lyratum; Aquilaria agallocha; Ulmi radicis; Polygonum tinctorium; Hwanglyun-Haedok-Tang; Rehmannia glutinosa; Kum-Hwag-San; Syzygium aromaticm; Spirulina platensis; Sosiho-Tang; Sinomenium acutum; Schizonepta tenuifolia; Shini-San; Magnoliae flos; Sochungryong-Tang; Oryza sativa; Cryptotympana atrata; Salviae radix; Rosa davurica; Asiasari radix; Chung-Dae-San; Cichorium intybus; Perilla frutescens; Vitex rotundifolia; Terminalia chebula; Siberian Ginseng; Solanum melongena; Gahmi-Shini-San; Alpinia oxyphylla; Acanthopanax senticosus root; Prunella vulgaris; Allergina; Ixeris dentate; Acanthopanax senticosus stem; Tongkyutang; Salvia plebeia; Rubus coreanus; Sinpo- Tang; Dodutang; Forsythia fructus; Xanthii fructus; and Purple bamboo slat. Ensuring the effects and understanding the mechanisms of action for these Oriental medicines can permit drug development and laying of the ground-work for evaluating potential synergistic effects by addition and subtraction of prescriptions.