• Title/Summary/Keyword: purple nonsulfur photosynthetic bacteria

Search Result 10, Processing Time 0.028 seconds

Molecular Level Relationships of Purple Nonsulfur Bacteria and their Relatives

  • Lee, Sang-Seob;Yoon, Byoung-Su;Kim, Jae-Soo;Lee, Hyun-Soon
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • DNA-DNA hybridization by kinetic method was carried out between species of purple nonsulfur photosynthetic bacteria and nonphotosynthetic bacteria. The degrees of homology percent were shown to be low (2-35 D%) with the exception of high homology % (72-88 D%) for strains within a species and between Rhodobacter capsulatus and Rhodopseudomonas blastica. The D% between the purple nonsulfur photosynthetic bacteria, Rhodopseudomonas palustris, and nonphotosynthetic bacteria, Pseudomonas aeruginosa ATCC 27853 or Bradyrhizobium japonicum were a little higher (26-33 D%) than the D% between any other photosynthetic bacteria. The homology % between Rhodopseudomonas blastica and Rhodobacter capsulatus was 72 D%, which showed genetic relationship.

  • PDF

Characterization of the purple nonsulfur bacterium, rhodopseudomonas palustris strain P-1, degrading ferulate

  • Hee, Hong-Duck;Kim, Kyung-Hwan;Lee, Jai-Youl
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 1992
  • Photosynthetic bacteria which can utilize ferulate as a sole carbon source for their metabolic activities were isolated from soils by liquid enrichment culture technique. The strain P-1 was selected by the highest capability of degrading ferulate in aerobic and anaerobic conditions. The strain P-1 was rod-shaped with its motility, strained gram negatively and could not utilize sulfur compounds. This strain has the bacteriochlorophyll a group I carotenoid and membrane structures like lamellae. As the results of physiological, morphological and cultural charactderistics, the isolate was identified as Rhodopseudomonas plaustris, one of the purple nonsulfer bacteria. The strain P-1 utilized 2mM/day in aerobic condition and 0.86 mM/day in anaerobic condition.

  • PDF

Isolation and Identification of Photosynthetic Bacterium Useful for Wastewater Treatment

  • Choi, Han-Pil;Kang, Hyun-Jun;Seo, Ho-Chan;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.643-648
    • /
    • 2002
  • For wastewater treatment and utilization of the biomass, a photosynthetic bacterium was isolated based on its cell growth rate, cell mass, and assimilating ability of organic acids. The isolate was a Gram-negative rod-shaped bacterium that contained a single polar flagellum and formed a lamellar intracytoplasmic membrane (ICM) system, including bacteriochlorophyll $\alpha$. The major isoprenoid quinone component was identified as ubiquinone Q-10, and the fatty acid composition was characterized as to contain relatively large amount of C-16:0 (18.74%) and C-18:1 (59.23%). Based on its morphology, phototrophic properties, quinone component, and fatty acid composition, the isolate appeared to be closely related to the Rhodopseudomonas subgroup of purple nonsulfur bacteria. A phylogenetic analysis of the isolate using its 16S rRNA gene sequence data also supported the phenotypic findings, and classified the isolate closely related to Rhodopseudomonas palustris. Accordingly, the nomenclature of the isolate was proposed as Rhodopseudomonas palustris KUGB306. A bench-scale photosynthetic bacteria (PSB) reactor using the isolate was designed and operated for the treatment of soybean curd wastewater.

Development of Advanced Wastewater Treatment System using Phototrophic Purple Non-sulfur Bacteria. (광합성 박테리아를 이용한 폐수의 고도처리시스템개발)

  • Lee, Sang-Sub;Joo, Hyun-Jong;Lee, Seok-Chan;Jang, Man;Lee, Taek-Gyeon;Sim, Ho-Jae;Shin, Eung-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.189-197
    • /
    • 2002
  • Twenty nine strains of photosynthetic purple nonsulfur bacteria were isolated from Kyonggi area in Korea. The isolated strains were identified as Rhodopseudomonas blastica, Rhodocyclus gelatinosus, Rhodocyclus tenuis, and Rhodopseudomonas rutila. The enhanced nutrients removal system for wastewater using phototrophic purple non-sulfur bacteria was developed. Experiments were performed into two Phases and the results were compared: the synthetic wastewater was tested for the removal efficiency of nutrients and organics during Phase 1 and the real wastewater during Phase2. Results showed that 97∼99% of organics were removed during Phase 1 and 96∼99% during Phase 2. Nutrients (nitrogen and phosphorus) were also removed efficiently: 85∼91% removal of T-N and 78∼92% removal of T-P were achieved for Phase 1, and 76∼89% removal of T-N and 73∼88% removal of T-P for Phase 2.

Isolation and Some Cultural Characteristics of ${\delta}-Aminolevulinic$ Acid - Producing Photosynthetic Bacteria (${\delta}-Aminolevulinic$ Acid 생산 광합성세균의 분리 및 배양특성)

  • Cheong, Dae-Yeol;Choi, Yang-Mun;Yang, Han-Chul;Cho, Hong-Yon
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.561-566
    • /
    • 1997
  • Screening, Identification and some cultural characteristics of ALA$({\delta}-aminolevulinic\;acid)$-producing photosynthetic bacteria were carried out for the optimal production of ALA, one of the bioherbicides. Among photosynthetic bacteria isolated from soil, marsh, pond, etc., KK-10 was the best producer of ALA and identified to be Rhodobacter capsulatus belonging to a typical group of nonsulfur purple bacteria. By addition of 15 mM LA (levulinic acid), an inhibitor of ALA dehydrase in cyclic tetrapyrrole biosynthesis, into culture broth at middle log phase of cell growths, ALA production was considerably increased to about 20-fold (28 mg/l). The combined supplementation of glycine and succinate, each with a concentration of 30 mM also enhanced production of ALA and activity of ALA synthase to about 50-fold (73 mg/l) and 2-fold, respectively. The isolated strain was able to produce upto 80 mg/l under the cultural condition optimized by addition 15 mM LA into the synthetic medium at four different points starting middle log phase.

  • PDF

Plant Growth Promotion by Purple Nonsulfur Rhodopseudomonas faecalis Strains (자색비유황세균 Rhodopseudomonas faecalis의 식물생장촉진능)

  • Lee, Eun-Seon;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.157-161
    • /
    • 2010
  • Photosynthetic purple nonsulfur bacterial strains were isolated from the sediments collected from rice paddy fields and sludges of wastewater treatment plant, and their plant growth promoting capabilities were examined. Most well known phytohormones, auxin such as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and 5'-aminolevulinic acid (ALA) were detected by HPLC in the culture broth of these isolates. Among the isolated bacteria, Rhodopseudomonas faecalis D15 showed the highest production rate of 769.8 ${\mu}g$/mg protein of IAA, 1323 ${\mu}g$/mg protein of IBA and 7.4 mM/mg protein of ALA in the modified Biebl and Pfennig's medium. R. faecalis C9 showed the highest production rate of 20.82 ${\mu}g$/mg protein of gibberellin. In consequence, the root length and dry weight of the germinated tomato seedling treated with R. faecalis isolates were longer and heavier than those of uninoculated control after 15 days of incubation in the soil. Especially, the dry weight of germinated tomato seedling increased by 119.4% in C9-treated samples after 15 days. These purple nonsulfur bacteria may be utilized as environment-friendly biofertilizer in the agriculture.

Treatment of Food Garbage Using a Treatment Reactor and Microbial Consortium (발효소멸기를 이용한 음식물 쓰레기의 감량 및 악취제거)

  • Koh, Rae-Hyun;Lee, Kang-Hyoung;Yoo, Jin-Soo;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.306-312
    • /
    • 2006
  • Disposal of food garbage in most large cities is very troublesome task. To date, microbiological treatment has been received an attention as a garbage decomposition process. In this study, the inoculation effect of some cellulase, amylase and protease-producing bacteria and photosynthetic bacteria on food garbage treatment was examined. They were added into a treatment reactor specially designed in this study together with food garbage and incubated in various conditions for 15 days and the removals of food garbage and foul smell produced during the treatment were analyzed. Average decomposition percentages of the inoculated food garbage in treatment reactor were 11 and 18.8% under intermittent aeration (once in a day) and continuous aeration conditions (2 L/min), respectively, and these were higher than removal percentages in the corresponding uninoculated reactors,3.4 and 13.8%. Optimal pH and temperature for food garbage decomposition by inoculated bacteria were pH 7.0 and $30^{\circ}C$. Maximal decomposition percentage in the inoculated food garbage was 35% under the optimal condition (pH 7, $30^{\circ}C$, and continuous aeration). The malodor compounds generated from food garbage treatment such as complex foul smell and sulfur compounds were effectively reduced about 84% and 25.5%, respectively, with a biofilter composed of purple nonsulfur bacteria trapped in sponge. This decomposing capability of food garbage by these bacteria can be utilized for the rapid and efficient treatment of food garbage.

Adsorption of Heavy Metal onto the Extracellular Polysaccharide Produced by the Purple Nonsulfur Photosynthetic Bacteria Rhodopseudomonas sp. KH4 (홍색 비황 광합성 세균 Rhodopseudomonas sp. KH4의 Extracellular polysaccharide의 중금속 흡착)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Lee, Jong-Yeol;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.326-331
    • /
    • 2006
  • In the present study, we examined biosorption characteristics of heavy metals onto the extracellular polysaccharide (EPS) produced by the purple nonsulfur photosynthetic bacteria Rhodopseudomonas sp. KH4, which was isolated from a stream in Anyang, Kyonggi-Do. When Cd (100 mg/L) and Cu (100 mg/L) were added to EPS (1.0 g/L) in the optimal condition (Cd; pH 8, Cu; pH 5, $40^{\circ}C$), 84.2 mg/L of Cd and 70.0 mg/L of Cu were adsorbed within 30 min and 10 min, respectively. When 100 mg/L of Cd and Cu were present as mixture, 16.8 mg/L of Cd and 48.7 mg/L of Cu were adsorbed at $25^{\circ}C$, pH 5. The maximum adsorption capacity determined by fitting Langmuir isotherms model was suitable for describing the biosorption of Cd (76.9 mg/g) and Cu (67.1 mg/g) by EPS. The neutral monosaccharide in the EPS determined by GC consisted of arabinose (2.4%), glucose (7.1%) and mannose (90.5%).

Studies on the Availability of Marine Bacteria and the Environmental Factors for the Mass Culture of the High Quality of Rotifer and Artemia 1. Change of Fatty Acid and Amino Aicd Composition During Cultivation of Rotifer, Brachionus plicatilis by Marine Bacteria Erythrobacter sp. $S\;\pi-I$ (고품질의 Rotifer와 Artemia의 생산을 위한 해양세균 이용과 대량생산에 따른 환경인자에 관한 연구 1. Erythrobacter sp. $S\;\pi-I$에 의한 Rotifer, Brachionus plicatilis의 배양시 지방산과 아미노산 조성의 변화)

  • LEE Won-Jae;PARK You-Soo;PARK Young-Tae;KIM Sung-Jae;KIM Kwang-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.319-328
    • /
    • 1997
  • To develop a beneficial microbial feed for the cultivation of rotifer, Brachionus plicatilis, an aerobic photosynthetic bacterium, Erythrobacter sp. $S\;\pi-I$ was isolated from marine structure at Haeundae beach in Pusan, Korea. Feeding effects of Erythrobacter sp. $S\;\pi-I$ on the growth of rotifer were analyzed comparing to other feeds such as PSB (purple nonsulfur bacteria), Chlorella sp. and baker's yeast. Erythrobacter sp. $S\;\pi-I$ contained more linoleic acid $(C_{18:3\omega3})$ and oleic acid $(C_{18:1\omega9})$ and amino acids than PSB (purple nonsulfur bacteria), Chlorella sp. and baker's yeast. The rotifer fed on Erythrobacter sp. $S\;\pi-I$ showed better effects than those fed on other feeds in the individual growth, size and weight. Also, the rotifer especially contained more eicosapentaenoic acid $(C_{20:5\omega3})$ and docosahexaenoic acid $(C_{22:6\omega3})$ in case of Erythrobacter sp. $S\;\pi-I$ feeding than the other feeds. In case of the feed of PSB and baker's yeast docosahexaenoic acid $(C_{22:6\omega3})$ did not show. In amino acid analysis, the rotifer fed on Erthrobacter sp, $S\;\pi-I$ showed more amino acid content comparing to those fed on other diets. Especially, arginine, isoleucine, histidine, lysine, methionine, phenylalanine, threonine, which are essential amino acid for fish growth, showed high contents. These results suggested that the aerobic photosynthetic bacterium, Erythrobacter sp. $S\;\pi-I$ would be a beneficial microbial teed for the cultivation of rotifer.

  • PDF

Biohydrogen Production from Carbon Monoxide and Water by Rhodopseudomonas palustris P4

  • Oh You-Kwan;Kim Yu-Jin;Park Ji-Young;Lee Tae Ho;Kim Mi-Sun;Park Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.270-274
    • /
    • 2005
  • A reactor-scale hydrogen (H2) production via the water-gas shift reaction of carbon monoxide (CO) and water was studied using the purple nonsulfur bacterium, Rhodopseudomonas palustris P4. The experiment was conducted in a two-step process: an aerobic/chemoheterotrophic cell growth step and a subsequent anaerobic $H_2$ production step. Important parameters investigated included the agitation speed. inlet CO concentration and gas retention time. P4 showed a stable $H_2$ production capability with a maximum activity of 41 mmol $H_2$ g $cell^{-1}h^{-1}$ during the continuous reactor operation of 400 h. The maximal volumetric H2 production rate was estimated to be 41 mmol $H_2 L^{-1}h^{-1}$, which was about nine-fold and fifteen-fold higher than the rates reported for the photosynthetic bacteria Rhodospirillum rubrum and Rubrivivax gelatinosus, respectively. This is mainly attributed to the ability of P4 to grow to a high cell density with a high specific $H_2$ production activity. This study indicates that P4 has an outstanding potential for a continuous H2 production via the water-gas shift reaction once a proper bioreactor system that provides a high rate of gas-liquid mass transfer is developed.