• 제목/요약/키워드: purinergic receptor P2X

검색결과 16건 처리시간 0.022초

The purinergic receptor P2X5 contributes to bone loss in experimental periodontitis

  • Kim, Hyunsoo;Kajikawa, Tetsuhiro;Walsh, Matthew C.;Takegahara, Noriko;Jeong, Yun Hee;Hajishengallis, George;Choi, Yongwon
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.468-473
    • /
    • 2018
  • Purinergic receptor signaling is increasingly recognized as an important regulator of inflammation. The P2X family purinergic receptors P2X5 and P2X7 have both been implicated in bone biology, and it has been suggested recently that P2X5 may be a significant regulator of inflammatory bone loss. However, a role for P2X5 in periodontitis is unknown. The present study aimed to evaluate the functional role of P2X5 in ligature-induced periodontitis in mice. Five days after placement of ligature, analysis of alveolar bone revealed decreased bone loss in $P2rx5^{-/-}$ mice compared to $P2rx7^{-/-}$ and WT control mice. Gene expression analysis of the gingival tissue of ligated mice showed that IL1b, IL6, IL17a and Tnfsf11 expression levels were significantly reduced in $P2rx5^{-/-}$ compared to WT mice. These results suggest the P2X5 receptor may regulate bone loss related to periodontitis and it may thus be a novel therapeutic target in this oral disease.

인간 퓨린수용체 $P2X_4$를 발현시킬 때 나타나는 대장균 독성의 원인분석 (Analysis of Toxicity in Escherichia coli from the Expression of Human Purinergic Receptor $P2X_4$)

  • 유연주;정윤아;임동빈
    • 미생물학회지
    • /
    • 제47권1호
    • /
    • pp.7-13
    • /
    • 2011
  • 일반적으로 대장균을 숙주로 이용하여 고등생물 유래 막단백질을 발현시킬 경우 발현된 막단백질은 숙주 세포에 치명적인 독성을 보인다. 우리가 발현을 시도한 15개의 인간 막단백질 중에서 특히 퓨린수용체 $P2X_4$ 발현은 대장균에 강한 독성을 보였다. 이러한 독성의 원인을 알아보기 위해 hydroxylamine을 사용하여 하여 인간 $P2X_4$ 유전자를 돌연변이 시키고 독성이 약해진 돌연변이체를 선별하였다. 돌연변이체 단백질을 면역블랏으로 분석한 결과 야생형에 비해 모두 단백질의 크기가 작았다. 크기가 제법 큰 돌연변이 두 개를 골라 DNA 서열분석을 해보니 130번째, 또는 194번째 Trp 코돈이 종결코돈으로 바뀜으로써 두 번째 막통과 도메인이 사라진 truncated protein이라는 사실을 알았다. 이들 돌연변이체의 세포내 위치를 추적해보니 둘 다 세포막에 삽입되어 있지는 않았다. 이런 결과를 종합해 볼 때 $P2X_4$의 발현이 대장균에 독성을 보이기 위해서는 전체 단백질의 올바른 세포막 삽입이 중요함을 시사한다.

Functional characterization of $P_{2X}/P_{2Y}$ receptor in isolated swine renal artery

  • Kim, Joo-heon;Jeon, Je-cheol;Lee, Sang-kil;Lee, Su-jin;Lee, Younggeon;Won, Jinyoung;Kang, Jae seon;Hong, Yonggeun
    • 대한수의학회지
    • /
    • 제47권4호
    • /
    • pp.371-378
    • /
    • 2007
  • To understand the role of $PM_{2X}/P_{2Y}$ receptor in cortex region of kidney and renal artery, molecular and functional analysis of $PM_{2X}/P_{2Y}$ receptor by pharmacophysiological skill in conventional swine tissues were performed. In functional analysis of $P_{2Y}$ receptor for vascular relaxation, 2-methylthio adenosine triphosphate, a strong agonist of $P_{2Y}$ receptor, induced relaxation of noradrenaline (NA)-precontracted renal artery in a dose-dependent manner. Strikingly, relaxative effect of ATP, 2-msATP, agonists of $P_{2Y}$ receptor, abolished by treatment of reactive blue 2, a putative $P_{2Y}$ receptor antagonist. In contrast, no significant differences of gene encoding $PM_{2X}/P_{2Y}$ and protein expression in immortalized suprachiasmatic nucleus from brain, primary isolated vascular smooth muscle cells from renal artery of pigs and HEK293 from human embryonic kidney under with/without adenosine triphosphate were observed. Taken together, the relationship between molecular and functional characteristic of $PM_{2X}/P_{2Y}$ receptors in conventional pig should be considered that they are another important factor which regulate the kidney function in swine. Based on this study, we propose the purinergic receptor as well as adrenergic and cholinergic receptors is an essential component of the renal homeostasis.

Expression of the ATP-gated $P2X_7$ Receptor on M Cells and Its Modulating Role in the Mucosal Immune Environment

  • Kim, Sae-Hae;Lee, Ha-Yan;Jang, Yong-Suk
    • IMMUNE NETWORK
    • /
    • 제15권1호
    • /
    • pp.44-49
    • /
    • 2015
  • Interactions between microbes and epithelial cells in the gastrointestinal tract are closely associated with regulation of intestinal mucosal immune responses. Recent studies have highlighted the modulation of mucosal immunity by microbe-derived molecules such as ATP and short-chain fatty acids. In this study, we undertook to characterize the expression of the ATP-gated $P2X_7$ receptor ($P2X_7R$) on M cells and its role in gastrointestinal mucosal immune regulation because it was poorly characterized in Peyer's patches, although purinergic signaling via $P2X_7R$ and luminal ATP have been considered to play an important role in the gastrointestinal tract. Here, we present the first report on the expression of $P2X_7R$ on M cells and characterize the role of $P2X_7R$ in immune enhancement by ATP or LL-37.

Purinergic Receptors Play Roles in Secretion of Rat von Ebner Salivary Gland

  • Kim, Sang-Hee;Cho, Young-Kyung;Chung, Ki-Myung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • 제31권4호
    • /
    • pp.141-148
    • /
    • 2006
  • The effects of adenosine triphosphate(ATP) on salivary glands have been recognized since 1982. The presence of purinergic recepetors(P2Rs) that mediate the effects of ATP in various tissues, including parotid and submandibular salivary gland, has been supported by the cloning of receptor cDNAs and the expression of the receptor proteins. P2Rs have many subtypes, and the activation of these receptor subtypes increase intracellular $Ca^{2+}$, a key ion in the regulation of the secretion in the salivary gland. The apical pores of taste buds in circumvallate and foliate papillae are surrounded by the saliva from von Ebner salivary gland(vEG). Thus, it is important how the secretion of vEG is controlled. This study was designed to elucidate the roles of P2Rs on salivary secretion of vEG. Male Sprague-Dawley rats (about 200 g) were used for this experiment. vEG-rich tissues were obtained from dissecting $500-1,000\;{\mu}m$ thick posterior tongue slices under stereomicroscope view. P2Rs mRNA in vEG acinar cells were identified with RT-PCR. To observe the change in intracellular $Ca^{2+}$ activity, we employed $Ca^{2+}-ion$ specific fluorescence analysis with fura-2. Single acinar cells and cell clusters were isolated by a sequential trypsin/collagenase treatment and were loaded with $10\;{\mu}M$ fura -2 AM for 60 minutes at room temperature. Several agonists and antagonists were used to test a receptor specificity. RT-PCR revealed that the mRNAs of $P2X_4$, $P2Y_1$, $P2Y_2$ and $P2Y_3$ are expressed in vEG acinar cells. The intracellular calcium activity was increased in response to $10\;{\mu}M$ ATP, a P2Rs agonist, and 2-MeSATP, a $P2Y_1$ and $P2Y_2R$ agonist. However, $300\;{\mu}M\;{\alpha}{\beta}-MeATP$, a $P2X_1$ and $P2X_3R$ agonist, did not elicit the response. The responses elicited by $10\;{\mu}M$ ATP and UTP, a $P2Y_2R$ agonists, were maintained when extracellular calcium was removed. $10\;{\mu}M$ suramin, a P2XR antagonist, and reactive blue 2, a P2YR antagonist, partially blocked ATP-induced response. However, when extracellular calciums were removed, suramin did not abolish the responses elicited by ATP. These results suggest that P2Rs play an important role in salivary secretion of vEG acinar cells and the effects of ATP on vEG salivary secretion may be mediated by $P2X_4$, $P2Y_1$, $P2Y_2$, and/or $P2Y_3$.

Extracellular ATP Induces Apoptotic Signaling in Human Monocyte Leukemic Cells, HL-60 and F-36P

  • Yoon, Mi-Jung;Lee, Hae-Jin;Kim, Jae-Hwan;Kim, Dong-Ku
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.1032-1041
    • /
    • 2006
  • Extracellular adenosine 5'-triphosphate (ATP) affects the function of many tissues and cells. To confirm the biological activity of ATP on human myeloid leukemic cells, F-36P and HL-60, cells were treated with a variety of concentrations of ATP. The stimulation with extracellular ATP induced the arrest of cell proliferation and cell death. from the analysis of Annexin-V staining and caspase activity by flow cytometry. The Annexin-V positive cells in both cell lines were dramatically increased following ATP stimulation. The expression of P2 purinergic receptor genes was confirmed, such as P2X1, P2X4, P2X5, P2X7 and P2Y1, P2Y2, P2Y4, P2Y5, P2Y6, P2Y11 in both leukemic cell lines. Interestingly, ATP induced intracellular calcium flux in HL-60 cells but not in F-36P cells, as determined by Fluo-3 AM staining. Cell cycle analysis revealed that ATP treatment arrested both F-36P and HL-60 cells at G1/G0. Taken together, these data showed that extracellular ATP via P2 receptor genes was involved in the cell proliferation and survival in human myeloid leukemic cells, HL-60 and F-36P cells by the induction of apoptosis and control of cell cycle. Our data suggest that treatment with extracellular nucleotides may be a novel and powerful therapeutic avenue for myeloid leukemic disease.

P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle

  • Cho, Young-Rae;Jang, Hyeon-Soon;Kim, Won;Park, Sun-Young;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.311-316
    • /
    • 2010
  • It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 ($10^{-7}{\sim}10^{-4}M$), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue ($10^{-6}{\sim}10^{-4}M$), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist ${\alpha}$,${\beta}$-methylene 5'-adenosine triphosphate (${\alpha}{\beta}MeATP$, $10^{-7}{\sim}10^{-5}M$) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[${\beta}$-thio]diphosphate trilithium salt ($ADP{\beta}S$, $10^{-7}{\sim}10^{-5}M$) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,$N$-diethyl-D-${\beta}$,${\gamma}$- dibromomethylene 5'-triphosphate triammonium (ARL 67156, $10^{-4}M$) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.

Genetic polymorphisms in external apical root resorption and orthodontic tooth movements: A systematic review

  • Ana Luiza Cabral de Avila Andrade;Yasmin Dias de Almeida Pinto;Bernardo Emerenciano Barros Maia;Joice Dias Correa;Diogo de Azevedo Miranda;Flavio Ricardo Manzi;Izabella Lucas de Abreu Lima
    • 대한치과교정학회지
    • /
    • 제54권5호
    • /
    • pp.284-302
    • /
    • 2024
  • Objective: External apical root resorption (EARR) is characterized by permanent loss of dental structure at the root apex. This study aimed to systematically review gene polymorphisms associated with EARR in orthodontic patients. Methods: Electronic database searches were performed across several databases. Results: This systematic review included 21 studies. Outcome measures were based on tooth dimensions observed on radiographs obtained before and after treatment. Polymorphisms in the following genes were genotyped using polymerase chain reaction-restriction fragment length polymorphism analysis: purinergic-receptor-P2X, ligand-gated ion channel 7 (P2RX7), caspase-1/interleukin-converting enzyme (CASP1/ICE), caspase-5 (CASP5), IL-1beta (IL1B), IL-1alpha (IL1A), interleukin-1 receptor antagonist gene (IL1RN), tissue non-specific alkaline phosphatase (TNSALP), tumor necrosis factor-alpha (TNFα), tumor necrosis factor receptor superfamily gene member 11a (TNFRSF11A), secreted phosphoprotein 1 (SPP1), tumor necrosis factor receptor superfamily gene member 11b (TNFRSF11B), interleukin 17A (IL17), interleukin 6 (IL6), receptor activator of nuclear factor-kappa B (RANK), osteoprotegerin (OPG), stromal antigen 2 (STAG2), vitamin D receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), cytochrome P450 family 27 subfamily B (CYP27B1), group-specific component (GC), and interleukin-1 receptor-associated kinases 1 (IRAK1). Conclusions: Almost all studies suggested that IL1 gene is associated with EARR. Additionally, P2RX7 may be an important factor contributing to the etiopathogenesis of EARR. TNFRSF11A, SPP1, IL1RN, IL6, TNFRSF11B, STAG2, VDR, IRAK1, IL-17, CASP1/ICE and CASP5 have been identified in isolated studies. Further observational studies are needed to better explain the association between these genes and EARR.

내장감각과민의 침구 치료에 대한 실험연구 현황: PubMed를 중심으로 (Experimental Study Trends on the Acupuncture Moxibustion Treatment for Visceral Hypersensitivity: Based on the Data of PubMed)

  • 한창우;최준용;박성하;김소연
    • Korean Journal of Acupuncture
    • /
    • 제36권2호
    • /
    • pp.93-103
    • /
    • 2019
  • Objectives : The aim of this study is to review the current trends in experimental studies on the acupuncture moxibustion treatment for visceral hypersensitivity. Methods : PubMed was searched for experimental studies about visceral hypersensitivity and acupuncture/moxibustion. Data were extracted and tabulated from the selected articles about experimental method, intervention, result and mechanism. Results : Total 23 articles were reviewed. Chronic visceral hypersensitivity animal model was applied in 17 studies (74%). Visceral hypersensitivity was measured by abdominal withdrawal reflex scoring or/and abdominal electromyogram. Acupoints like ST25, ST36, ST37, BL25, LI11, BL32 and PC6 were treated by electroacupuncture or moxibustion. All articles reported that electroacupuncture or moxibustion treatment is significantly effective in reducing visceral hypersensitivity. Treatment mechanisms were studied, related to mast cell, serotonin (5-HT) and receptor (5-HT3R and 5-HT4R), substance P (SP), vasoactive intestinal polypeptide (VIP), c-fos positive cell, corticotropin-releasing hormone (CRH), purinergic 2X (P2X)2, P2X3, P2X4, P2X7, N-methyl-D-aspartate (NMDA) receptor (NR1 and NR2B), prokinectin (PK) 1 and PK2. Conclusions : Evidences on acupuncture/moxibustion treatment for visceral hypersensitivity in animal studies warrant more research on effective acupoins, electro-acupuncture methods and treatment durations.

Influence of 5′-(N′-Ethylcarboxanlido) Adenosine on Catecholarnine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Oh, Hyeong-Geun;Woo, Seong-Chang
    • Biomolecules & Therapeutics
    • /
    • 제8권4호
    • /
    • pp.338-348
    • /
    • 2000
  • The present study was attempted to determine the effect of 5'-(N'-ethylcarboxamido) adenosine (NECA), which is an potent $A_2$-adenosine receptor agonist, on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. NECA (20 nM) perfused into the adrenal vein for 60 min produced a time-related inhibition in CA secretion evoked by ACh (5.32x10$^{-3}$ M), high $K^{+}$(5.6x10$^{-2}$ M), DMPP (10$^{-4}$ M for 2 min), McN-A-343 (10$^{-4}$ M for 2 min), cyclopiazonic acid (10$^{-5}$ M for 4 min) and Bay-K-8644 (10$^{-5}$ M for 4 min). Also, in the presence of $\beta$,${\gamma}$-methylene adenosine-5'-triphosphate (MATP), which is also known to be a selective $P_{2x}$-purinergic receptor agonist, showed a similar inhibition elf CA release evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid. However, in adrenal glands preloaded with 20$\mu$M NECA for 20 min under the presence of 20$\mu$M 3-isobutyl-1-methyl-xanthine (IBMX), an adenosine receptors antagonist, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were much recovered in comparison to the case of NECA-treatment only. Taken together, these results indicate that NECA causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization. This inhibitory effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells through the adenosine receptor stimulation. Therefore, it is suggested that the inhibitory mechanism of adenosine receptor stimulation may play a modulatory role in regulating CA secretion.n.n.

  • PDF