• Title/Summary/Keyword: purification technology

Search Result 1,107, Processing Time 0.027 seconds

Studies on the Water Quality of Urban Streams in Daegu City (대구시(大邱市) 도시하천(都市河川)의 수질조사(水質調査) 연구(硏究))

  • Lee, Jyung Jae;Park, Byoung Yoon;Choi, Jyung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.99-104
    • /
    • 1988
  • Water polution status of urban streams in Daegu city were observed to provide the basic information for the effective purification of urban sewage and the conservation of Keumho river. Periodically, pH, DO, COD, nitrate and phosphate of water were investigated at Yee cheon, B$\ddot{o}$m$\ddot{o}$ cheon, Chilsung cheon, Dalseo cheon and Kongdan cheon. The results were as follows. 1) The ranges of average values of analyzed components for 12 months at six sampling sites were pH 7.3-8.2, DO trace-6.5ppm, COD 20.4-116.9ppm, T-N 23.2-31.7ppm, $NH_4$-N 18.3-27.7ppm, $NO_2$-N 0.08-1.89ppm, $NO_3$-N 0.19-1.51ppm, $PO_4$-P 2.50-17.28ppm. 2) At Kongdan cheon, the most heavily polluted site, average values of components were pH 8.2, DO trace, COD 116.9ppm, T-N 23.2ppm, $NH_4$-N 18.3ppm, $NO_2$-N 1.89ppm, $NO_3$-N 1.51ppm, $PO_4$-P 17.28ppm. 3) The values of pH, DO, COD, T-N and $NH_4$-N at winter urban streams were higher than those at summer urban streams. And the values of $NO_2$-N and $PO_4$-P were more or less higher at summer urban streams.

  • PDF

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

Development of an Solid Separation System for Pig Slurry (돈 슬러리용 고형물 분리시스템 개발)

  • 김민균;김태일;최동윤;백광수;박진기;양창범;탁태영
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • This study was conducted to develope the new solid separating system which can be efficiently and economically removed the solid parts in high pollutants concentration of pig slurry. The pollutants concentration, BOD$_{5}$ , COD and SS of the slurry used in this study was 15,990($\pm$2,389)mg/l, 20,004($\pm$5,512)mg/l and 26,486($\pm$5,935)mg/l, respectively. After removal of solid part in slurry, the pollutants concentration, BOD$_{5}$, COD and SS was change into 5,617($\pm$690)mg/l, 5,553($\pm$633)mg/land 1,456($\pm$341)mg/l, respectively in the Fixed biological membrane tank. The reduction of the pollutants concentration of suspend liquid through membrane will be allowed to greatly improve the water purification by an Activated sludge method. This separating system consisted of a temporary storage, a circulating tank and a Fixed Biological membrane tank. A temporary storage which has a draining system of screw type and an aeration device played a tremendous role in draining the solid by filled an aeration of 0.3 l/min. A Fixed Biological membrane tank of which a styrofoam filled in a 2/3 volume as a Biological media was fixed by a stainless steel net (pore size : 0.5mm) to separate the liquid layer of influx in them. The separating system efficiency factors were the speed of screw motor, cycle number of slurries in a circulating tank and moisture contents of solid effluent through the screw path. Although the pollutants concentration was very variable in temporary storage, the final concentration of $BOD_5$ and SS, except COD of the suspended liquid in a Fixed biological membrane were not different regardless of cycle number of a circulating tank. Moisture contents of effluent from temporary storage was 73% under the speed 1 ppm of screw motor and 62% under the 1/4rpm of it.

  • PDF

Optimum Pre-treatment Method in Constructed Wetlands by Natural Purification Method for Treating Livestock Wastewater (자연정화공법에 의한 인공습지에서 효과적인 축산폐수처리를 위한 최적 전처리방법 구명)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Ah-Reum;Kim, Sung-Hun;Lee, Seong-Tea;Jeong, Tae-Uk;Choi, Jeong-Ho;Lee, Sang-Won;Cho, Ju-Sik;Kim, Hyun-Ook;Heo, Jong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.425-433
    • /
    • 2011
  • In order to obtain optimum pre-treatment methods and improve T-N and T-P removal efficiencies, removal rates of pollutants in small-scale livestock wastewater treatment apparatus with water plant filtration bed or activated sludge tank were investigated. Based on the results from the optimum pre-treatment in small-scale livestock wastewater treatment apparatus, removal efficiencies of pollutants in livestock wastewater treatment plant with water plant filtration and activated sludge beds. The removal rates of COD, SS, T-N, and T-P in effluent were 83, 89, 63 and 87% in small-scale livestock wastewater treatment apparatus with water plant filtration bed, respectively. The removal rates of COD, SS, T-N, and T-P in effluent were 96, 95, 86 and 92% in small-scale livestock wastewater treatment apparatus with activated sludge tank, respectively. For increasing the COD, SS, T-N, and T-P removals in small-scale livestock wastewater treatment apparatus, the water plant filtration and activated sludge beds are recommended. In livestock wastewater treatment plant with water plant filtration ($1^{st}$ treatment) and activated sludge ($2^{nd}$ treatment) beds, the concentrations of COD, SS, T-N, and T-P in effluent were 39, 15, 42 and $1mg\;L^{-1}$, respectively. It was shown that the concentrations of COD, SS, T-N, and T-P met acceptable effluent quality standard for livestock wastewater. Based on the above results, the removal rates of COD, SS, T-N, and T-P in effluent were over 99.8, 99.9, 99.2, and 99.9% in livestock wastewater treatment plant, respectively.

Physicochemical properties of deposited particles on surface of pine leaves as biomarker for air pollution (솔잎가지 표면에 침착된 입자상 물질의 물리화학적 특성 및 대기오염 지표로서의 가능성 고찰)

  • Chung, David;Choi, Jeong-Heui;Lee, Jang-Ho;Lee, Soo-Yong;Lee, Ha-Eun;Park, Ki-Wan;Shim, Kyu-Young;Lee, Jong-Chun
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.247-258
    • /
    • 2018
  • The purpose of the present study was to investigate whether the degree of air pollution can be evaluated via examination of local plants. Selected sites included two parks in an industrial area, as well as two parks in an urban area. Selected plant samples comprised one-year-old pine shoot leaves. Leaves growing over 2 m from the ground were collected from over 10 pine trees. Leaf surface was analyzed for deposition of 14 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs), including particle size and mass, surface imaging, precipitation-mediated particle removal rate, and concentration. Particle size ranged from 0.4 to $200{\mu}m$, and the volume percentage of particles ${\leq}10$ was 20 %. Deposited particle mass ranged from 0.450-0.825 mg, and precipitation-mediated removal rate ranged from 10.0-27.6 %. Trace element concentration, as measured by ICP/MS after microwave acid digestion, was 18.8-26.3 mg/kg As, 0.08-0.13 mg/kg Be, 0.06-0.08 mg/kg Cd, 4.91-17.8 mg/kg Cr, 5.26-405 mg/kg Cu, 1,930-2,670 mg/kg Fe, 3.03-28.1 mg/kg Pb, 26.9-42.8 mg/kg Mn, 2.66-10.4 mg/kg Ni, 4,560-8,730 mg/kg Al, 2,500-6,120 mg/kg Ba, 5.27-17.8 mg/kg Rb, 40.9-95.3 mg/kg Sr, and 4,030-8,260 mg/kg Zn. Concentration of PAHs, as analyzed by GC/MS/MS after liquid-liquid extraction and purification of deposited particles, ranged from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_{16}$ and from 1.17 to 12.378 mg/kg for ${\Sigma}PAH_7$.

Understanding the Impact of Environmental Changes on the Number of Species and Populations of Odonata after Creating a Constructed Wetland (인공습지 조성 후 환경변화가 잠자리목의 종수 및 개체수에 미치는 영향 파악)

  • Lee, Soo-Dong;Bae, Soo-Hyoung;Lee, Gwang-Gyu
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.515-529
    • /
    • 2020
  • Constructed wetlands undergo biological and physical changes such as an increase in the proportion of arid plants due to the natural succession process after formation. It can adversely affect not only the purification function but also the habitat of species. As such, this study aims to identify environmental factors affecting biodiversity and propose management plans based on the monitoring results of physical environmental changes and the emergence of species in seven constructed wetlands selected based on the water depth and surrounding conditions among the lands purchased by the Nakdong River basin. We examined the environmental conditions and emergence of the Odonata, which is a wetland-dependent species, to predict the trend of changes in biodiversity and abundance. The results showed that the open water area decreased as the emergent plants spread to the deep water in 2015 compared to 2012 when they were initially restored to a depth of 0.2 to 1 m. While a total of 54 dragonfly species were observed, the habitat diversity, such as vegetation, water surface, and grassland, remained similar to the initial formation of the wetlands despite the expansion of the emergent plants. On the other hand, the number of Agrionidae species, which prefer areas with fewer aquatic plants, decreased between 2012 and 2015 due to the diminished water surface. The p-values of the differences in the number of species and population between wetlands by year were 2.568e-09 and 1.162e-08, respectively, indicating the statistically significant differences. The decrease in open water surface was found to have the greatest effect on the biodiversity and habitat density of dragonflies. The time-series survey of constructed wetlands confirmed that the spread of Phragmites communis, P. japonica, Typha orientalis, etc., caused a decrease in species diversity. It suggests that environmental management to maintain the open water surface area is necessary.

The control of TiO2 nanofiber diameters using fabrication variables in electrospinning method (전기 방사 공정의 제조 변수를 이용한 TiO2 나노섬유의 직경 제어)

  • Yoon, Han-Sol;Kim, Bo-Sung;Kim, Wan-Tae;Na, Kyeong-Han;Lee, Jung-Woo;Yang, Wan-Hee;Park, Dong-Cheol;Choi, Won-Youl
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • TiO2 has been used in various fields such as solar cells, dental implants, and photocatalysis, because it has high physical and chemical stability and is harmless to the body. TiO2 nanofibers which have a large specific surface area also show a good reactivity in bio-friendly products and excellent photocatalysis in air and water purification. To fabricate TiO2 nanofibers, an electrospinning method was used. To observe the diameter of TiO2 nanofibers with fabrication variables, the fabrication variables was divided into precursor composition variables and process variables and microstructure was analyzed. The concentrations of PVP (Polyvinylpyrrolidone) and TTIP (Titanium(IV) isopropoxide) were selected as precursor composition variables, and inflow velocity and voltage were also selected as process variables. Microstructure and crystal structure of TiO2 nanofibers were analyzed using FE-SEM (Field emission scanning electron microscope) and XRD (X-ray diffraction), respectively. As-spun TiO2 nanofibers with an average diameter of about 0.27 ㎛ to 1.31 ㎛ were transformed to anatase TiO2 nanofibers with an average diameter of about 0.22 ㎛ to 0.78 ㎛ after heat treatment of 3 hours at 450℃. Anatase TiO2 nanofibers with an average diameter of 0.22 ㎛ can be expected to improve the photocatalytic properties by increasing the specific surface area. To change the average diameter of TiO2 nanofibers, the control of precursor composition variables such as concentrations of PVP and TTIP is more efficient than the control of electrospinning process variables such as inflow velocity and voltage.