• Title/Summary/Keyword: purification method

Search Result 853, Processing Time 0.026 seconds

Studies on the Evaluation Method of Heavy Metal Contamination Degree in the Han River (한강 저질중의 중금속 오염도 평가 방법에 관한 연구)

  • 어수미;박성배
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.47-57
    • /
    • 1992
  • This study was performed to evaluate contamination degree of heavy metals in sediments of Han River, compared with other nation's evaluation method. The results were as follows 1. The contamination Ratio calculation method by heavy metal concentration in differnt fraction size has a limitation to apply to all of the areas of Han river because of its characteristics of sediment. As a result, this method applied to only 4 areas of Pal Dang, Wang Sook Chon, Uk Chon, and Bul Kwang Chon, and Contmination Ratio of heavy metals in those areas were relatively low of below 3. So it's considered that those areas have less contaminated from anthropogenic contaminants. 2. The Contamination Ratio calculation method by heavy metal concentration in different areasthat of upper area to be background level-has a limitation also to apply to Han river. But it is considered that this method was relatively suitable to apply, so it should be prepared evaluation standand method for them. Contamination ratio from background level as Pal Dang area were most high in An Yang Chon. So it must be prepared purification and control measure at An Yang Chon.

  • PDF

Selection of Optimum Pebbles Size in Sewage Treatment Plant by Natural Purification Method (자연정화공법에 의한 하수처리장에서 최적 여재 선정)

  • Seo, Dong-Cheol;Cho, Ju-Sik;Park, Hyun-Geoun;Kim, Hyoung-Kab;Heo, Jong-Soo;Lee, Hong-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.26-35
    • /
    • 2003
  • An investigation was carried out to evaluate the effects of pebble size on the small-scale sewage treatment apparatus by natural purification method that consisted of aerobic and anaerobic plot. pH and EC in both plots varied minimally regardless of pebble size. DO in aerobic plot increased as the pebble size decreased. That in the anaerobic plot was slightly less in comparison with that of the aerobic plot but varied minimally, $2.4{\sim}5.1\;mg/L$ regardless of pebble size. Under all experimental conditions, removals of BOD, COD and turbidity in anaerobic plot were more than 98, 91 and 98, 98% respectively. Removals of T-N and T-P increased as pebble size decreased. Under all experimental conditions, removals of T-N and T-P in anaerobic plot were about $45{\sim}59$ and $480{\sim}96%$, respectively. Judging from the above results, it should be considered that the optimum pebble size and pebble permeability in both plot was $2{\sim}4$ and $0.1{\sim}4\;mm$, respectively.

Simultaneous Purification of Enterotoxin A and C by Fast Protein Liquid Chromatography (FPLC에 의한 Staphylococcal Enterotoxin A와 C의 동시분리)

  • Lee, Jung-Hee;Kim, Jong-Bae;Shin, Heuyn-Kil
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.856-861
    • /
    • 1988
  • A new method developed for simultaneous purification of enterotoxin A and C from Staphylococcus aureus strain L 350/1 consisted of chromatography on carboxymethyl (CM)-cellulose using a buffer of variable pH, gel filtration on Ultro gel, and fast protein liquid chromatography(FPLC) using a buffer of variable pH. The enterotoxin A and C were purified by three steps: batchwise adsorption from culture supernatant on Amberlite CG-50; chromatography on CM-cellulose using a buffer of constant pH and molarity; and gel filtration on Sephadex G-75. The purified enterotoxin appeared homogeneous by gel diffusion and polyacrylamide gel electrophoresis. Upon treatment with CM-cellulose using a elution of variable pH, enterotoxin A and C were so close that they were not separated completely. After elution from gels, the enterotoxins appeared as a single peak at the same position. Gel filtration gave a reaction of complete identity to enterotoxin A and C in Ouchterlony immunodiffusion. In FPLC using a CM-cellulose, enterotoxin A and C were simultaneously separated at pH 8.6 and 6.8. When each fraction was performed to gel immunodiffusion, at peak of enterotoxin A and C were not detected each other. In a method of elution by pH-gradient was to be more efficient as a simultaneous separation method in terms of speed, yields and simplicity. The purified toxin A and C were identical to type A and C reference enterotoxin on both disc electrophoresis and Ouchterlony gel diffusion.

  • PDF

Optimum Depth and Volume Ratio of Aerobic to Anaerobic Bed for Development of Small-Scale Sewage Treatment Apparatus by Natural Purification Method (자연정화공법에 의한 소형 하수처리장치 개발을 위한 최적 깊이 및 호기.혐기 비율)

  • Seo, Dong-Cheol;Park, Mi-Ryoung;Kwak, Nae-Woon;Hwang, Ha-Na;Lee, Hong-Jae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.14-24
    • /
    • 2006
  • To develop small-scale sewage treatment apparatus for detached house of agricultural village, a small-scale sewage treatment apparatus by natural purification method that consisted of aerobic and anaerobic bed was constructed. To reduce the area of a sewage treatment apparatus, four different fitter media were used and each filter medium was coarse sand, broken stone, steel slag, and mixed fitter media (coarse sand : broken stone : steel slag = 1:1:1). The efficiency of sewage treatment according to the depth of aerobic and anaerobic bed and the volume ratio of aerobic to anaerobic bed were investigated in small-scale sewage treatment apparatus. The removal rate of pollutants according to the depth of aerobic and anaerobic bed in small-scale sewage treatment apparatus was high in the order of 50 cm < 70 cm < 90 cm. The removal rate of pollutants according to the ratio of aerobic to anaerobic bed in small-scale sewage treatment apparatus was high in the order of 1:1 < 1:2 $\fallingdotseq$ 1:3. Under the optimum conditions, removal rate of BOD, COD, SS, T-N and T-P were $98{\sim}99,\;95{\sim}97,\;99,\;65{\sim}66\;and\;96{\sim}99%$ respectively, in small-scale sewage treatment apparatus.

Determination of Optimal Hourly Water Intake Amount for H Arisu Purification Center using Linear Programming (선형계획법을 이용한 H 아리수 정수 센터 최적 취수량 결정)

  • Lee, Chulsoo;Lee, Kangwon
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1051-1064
    • /
    • 2015
  • Currently, the H purification plant determines the hourly water intake amount based on operator experience and skill. Therefore, inevitably, there are deviations among operators. While meeting time-varying demand and maintaining the proper water level in the clean water reservoir, the methodology for minimizing electricity cost, when dealing with different electricity rate time zones, is a very complicated problem, which is beyond an operator's capability. To solve this problem, a linear programming (LP) model is proposed, which can determine the optimal hourly water intake amount for minimizing the daily electricity cost. It is shown that an inaccurate estimate for the hourly water usage in the demand areas causes the water level constraint to be violated, which is the weak point of the proposed LP method. However, several examples with real-field data show that we can practically and safely solve this problem with safety margins. It is also shown that the safety margin method still works effectively whether the estimate is accurate or not. The operators need not attend the site at all times under the proposed LP method, and we can additionally expect reductions in labor costs.

Purification of Pig Muscle Stem Cells Using Magnetic-Activated Cell Sorting (MACS) Based on the Expression of Cluster of Differentiation 29 (CD29)

  • Choi, Kwang-Hwan;Kim, Minsu;Yoon, Ji Won;Jeong, Jinsol;Ryu, Minkyung;Jo, Cheorun;Lee, Chang-Kyu
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.852-859
    • /
    • 2020
  • The muscle stem cells of domestic animals are of interest to researchers in the food and biotechnology industries for the production of cultured meat. For producing cultured meat, it is crucial for muscle stem cells to be efficiently isolated and stably maintained in vitro on a large scale. In the present study, we aimed to optimize the method for the enrichment of pig muscle stem cells using a magnetic-activated cell sorting (MACS) system. Pig muscle stem cells were collected from the biceps femoris muscles of 14 d-old pigs of three breeds [Landrace×Yorkshire×Duroc (LYD), Berkshire, and Korean native pigs] and cultured in skeletal muscle growth medium-2 (SkGM-2) supplemented with epidermal growth factor (EGF), dexamethasone, and a p38 inhibitor (SB203580). Approximately 30% of total cultured cells were nonmyogenic cells in the absence of purification in our system, as determined by immunostaining for cluster of differentiation 56 (CD56) and CD29, which are known markers of muscle stem cells. Interestingly, following MACS isolation using the CD29 antibody, the proportion of CD56+/CD29+ muscle stem cells was significantly increased (91.5±2.40%), and the proportion of CD56 single-positive nonmyogenic cells was dramatically decreased. Furthermore, we verified that this method worked well for purifying muscle stem cells in the three pig breeds. Accordingly, we found that CD29 is a valuable candidate among the various marker genes for the isolation of pig muscle stem cells and developed a simple sorting method based on a single antibody to this protein.

Evaluation of two DNA extraction methods on exhumed bone samples: Ultrafiltration versus column affinity (유골에서 DNA 추출법 비교 연구: Ultrafiltration과 Column affinity)

  • Kim, Soonhee;Hong, Seungbeom;Kemp, Brian M.;Park, Kiwon;Han, Myunsoo
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.338-343
    • /
    • 2008
  • Extraction of DNA from skeletal material is of great importance in the identification of human remains, but is particularly difficult because the high amount of microbial DNA was often co-extracted with human bone DNA. We found that a phenol/chloroform extraction, followed by ultrafiltration, and cleanup by via the $QIAquick^{(R)}$ PCR purification kit yields higher amounts of human genomic DNA compared with extraction by the column affinity $method^{(R)}$ alone. Ultrafiltration extraction of human DNA from ten exhumed bone samples yielded $0.041-1.120ng/{\mu}L$ DNA (mean = $0.498ng/{\mu}L$ DNA), and purification using the column affinity resulted in $0.016-0.064ng/{\mu}L$ DNA (mean = $0.034ng/{\mu}L$ DNA). Although the STR genotyping by the column affinity method was partially successful, all DNA samples by the ultrafiltration method produced full profiles from the multiplex PCR. The efficiency of STR genotyping was in accordance with the amounts of the human DNA extracted.

Development of an Optimal Operation Model of Residual Chlorine Concentration in Water Supply System (송·배수시스템의 최적 잔류염소농도 관리 모델 개발)

  • Kim, Kibum;Hyung, Jinseok;Seo, Jeewon;Shin, Hwisu;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.587-597
    • /
    • 2017
  • This study aimed to develop a method to optimize residual chlorine concentrations in the process of providing water supply. To this end, this study developed a model capable of optimizing the chlorine input into the clearwell in the purification plant and the optimal installation location of rechlorination facilities, and chlorine input. This study applied genetic algorithms finding the optimal point with appropriate residual chlorine concentrations and deriving a cost-optimal solution. The developed model was applied to SN purification plant supply area. As a result, it was possible to meet the target residual chlorine concentration with the minimum cost. Also, the optimal operation method in target area according to the water temperature and volume of supply was suggested. On the basis of the results, this study derived the most economical operational method of coping with water pollution in the process of providing water supply and satisfying the service level required by consumers in the aspects of cost effectiveness. It is considered possible to appropriately respond to increasing service level required by consumers in the future and to use the study results to establish an operational management plan in a short-term perspective.

Filtration Characteristics of Polymeric Porous Materials Composed of Polypropylene and Polyethylene (Polypropylene과 Polyethylene으로 구성된 기공성 고분자 소재의 여과특성)

  • Ahn, Byeng-Gil;Oh, Kyeong-Keun;Choi, Ung-Soo;Kwon, Oh-Kwan
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.32-40
    • /
    • 1998
  • The polymeric porous materials which consist of polypropylene(PP) and polyethylene(PE) powder were prepared to apply to the air purification systems by extrusion sintering method. SEM analysis showed that a composite polymeric porous structure made up of PP and PE was obtained, where PE was melted and adhered to PP because the melting temperature of PE was lower than that of PP. The filtration characteristics and mechanical properties of polymeric porous materials were investigated by varying the head die temperature of the extruder, extrusion velocity, and the melt index and quantity of PE. The filtration efficiency was proportional to the quantity of PE but inversely proportional to the melt index of PE. The polymeric porous materials composed of PP and PE, which was made by extrusion sintering method, was found to be suitable for the filter element of the air purification system.

  • PDF

Combined TPH and BTEX Analytic Method to Identify Domestic Petroleum Products in Contaminated Soil (오염토양 내 석유제품 판별을 위한 TPH 및 BTEX 분석)

  • Lim, Young-Kwan;Na, Yong-Gyu;Kim, Jeong-Min;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.263-268
    • /
    • 2017
  • The significance of maintaining the soil environment is gradually increasing owing to soil and underground water contamination by petroleum leak accidents. However, the purification of soil is an expensive and more time-consuming process than the purification of contaminated water and air. Moreover, determining the source and people responsible for soil pollution gets often embroiled in legal conflicts, further delaying the cleanup process of the contaminate site. Generally, TPH (total petroleum hydrocarbon) pattern analysis is used to determine the petroleum species and polluter responsible for soil contamination. However, this process has limited application for petroleum products with a similar TPH pattern. In this study, we analyze the TPH pattern and specific sectional ratio (${\sim}C_{10}$, $C_{10}-C_{12}$, $C_{12}-C_{36}$, and $C_{36}{\sim}$) of various domestic petroleum products to identify the petroleum product responsible for soil contamination. Also, we perform BTEX (benzene, toluene, ethyl benzene, xylene) quantitative analysis and determine B:T:E:X ratio using GC-MS. The results show that gasoline grade 1 and 2 have a similar TPH pattern but different BTEX values and ratios. This means that BTEX analysis can be used as a new method to purify soil pollution. This complementary TPH and BTEX method proposed in this study can be used to identify the petroleum species and polluters present in the contaminated soil.