• Title/Summary/Keyword: purge and trap

Search Result 66, Processing Time 0.023 seconds

Identification of the Major Volatile Components from Different Plant Organs of Foeniculum vulgare Mill.

  • Chung, Hae-Gon;Bang, Jin-Ki;Kim, Geum-Soog;Seong, Nak-Sul;Kim, Seong-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.274-278
    • /
    • 2003
  • The various plant organs of fennel (Foeniculum vulgare Mill.) were investigated to identify their volatile components using Dynamic Headspace (purge & trap). They showed slight differences concerning the volatile components both qualitatively and quantitatively. Results revealed that trans-anethole (12.65%) was the major compound in the leaf. The highest compound was ${\alpha}-pinene$ (28.78%), and trans-anethole (7.90%) was highly detected in the stem. The maximum values were 5.64, 4.59, 1.58, 1.51, and 1.04% for ${\alpha}-pinene,\;{\gamma}-terpinene,\;{\beta}-pinene$, 1,8-cineol and fenchone, respectively in the flower. However, very little trans-anethole was detected (0.27%) in the flower. From these results, it was suggested that the major components were different depending on the plant organs. However it was demonstrated that the related plant organs like flower-fruit and leaf-stem contained the similar components.

Distribution of THMs at Drinking Water Purification Plants in the East Coast Region of Gangwon-do (강원도 동해안 지역 정수장의 THMs 분포)

  • Huh, In-Ryang;Shin, Yong-Keon;Park, Sung-Bin;Lee, Teak-Soo;Shim, Tae-Heum
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Objectives: In an effort to examine the distribution of THMs (Trihalomethane) generated from chlorine disinfection by the drinking water treatment plants located on the east coast region of Gangwon-do, this study surveyed the distribution and concentrations of each component of THMs twice per month for 5 years from 2008 to 2012. Fluctuation pattern in the seasonal generation amount was identified. In addition, the correlation between the concentration of organic substances in water and THMs was assessed, along with stability of purified water quality supplied by the water treatment plants on the east coast by analyzing the composition ratio of each component that constitutes THMs and the detection frequency. Method: The research was done on purified water supplied by 29 water treatment plants in 7 cities and counties (Goseong-gun, Sokcho-si, Yangyang-gun, Gangneung-si, Donghae-si, Samcheok-si, Taebaek-si) located in Gangwon-do on the east coast. Water samples were collected twice a month from 2008 to 2012 and were investigate for chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform, based on analysis through Purge-Trap (Tekmar 3000) devices using FID-attached GC (HP 6890, Hewlett Packard). Result: THMs concentration detected at Gangneung-si was 0.0086mg/L, Goseong-gun 0.0019mg/L, Donghae-si 0.0099 mg/L, Samcheok-si 0.0016 mg/L, Sokcho-si 0.0057 mg/L, Yangyang-gun 0.0027 mg/L and Taebaek-si 0.0038 mg/L. As the THMs composition rate, chloroform constitutes 51.4% followed bybromodichloromethane 22.3%, bromoform 15.2% and dibromochloromethane 11.1% respectively. Conclusion: Throughout the entire THMs survey areas and period, the maximum concentration was 0.072mg/L, which did not exceed the water quality standards (0.1 mg/L), and the overall average concentration was very low at 0.0044 mg/L.

The Influence of Spices on the Volatile Compounds of Cooked Beef Patty

  • Jung, Samooel;Jo, Cheorun;Kim, Il Suk;Nam, Ki Chang;Ahn, Dong Uk;Lee, Kyung Heang
    • Food Science of Animal Resources
    • /
    • v.34 no.2
    • /
    • pp.166-171
    • /
    • 2014
  • The aim of this study is to examine the influences of spices on the amounts and compositions of volatile compounds released from cooked beef patty. Beef patty with 0.5% of spice (nutmeg, onion, garlic, or ginger powder, w/w) was cooked by electronic pan until they reached an internal temperature of $75^{\circ}C$. A total of 46 volatile compounds (6 alcohols, 6 aldehydes, 5 hydrocarbons, 6 ketones, 9 sulfur compounds, and 14 terpenes) from cooked beef patties were detected by using purge-and-trap GC/MS. The addition of nutmeg, onion, or ginger powder significantly reduced the production of the volatile compounds via lipid oxidation in cooked beef patty when compared to those from the control. Also, the addition of nutmeg and garlic powder to beef patty generated a lot of trepans or sulfur volatile compounds, respectively. From these results, the major proportion by chemical classes such as alcohols, aldehydes, hydrocarbons, ketones, sulfur compounds, and terpenes was different depending on the spice variations. The results indicate that addition of spices to the beef patty meaningfully changes the volatile compounds released from within. Therefore, it can be concluded that spices can interact with meat aroma significantly, and thus, the character of each spice should be considered before adding to the beef patty.

The Analysis of Trihalomethanes in Water Sample by Purge-and-Trap Gas Chromatograph/Mass Spectrometer and Risk Assessment (퍼지-트랩 기체크로마토그래프/질량분석계에 의한 물시료 중 Trihalomethanes의 분석 및 위해성 평가)

  • Kwak Sunyoung;Pyo Heesoo;Park Song-Ja
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • Recently, significant contamination problems by residual chemicals have occasionally been occurred from major rivers and drinking water in Korea. Therefore, the management for use of them and risk assessment should be more strictly performed. In this study, we have analyzed trihalomethanes in treated water samples taken from water plants located in the region of four major rivers (i.e. Han river, Geum river, Youngsan river and Nakdong river) in Korea for eight years (1997~2004). From the data, we could assess the excess cancer risk by calculating the chronic daily intakes (CDI) multiplied by individual oral slope factors, Q₁*, for the cancer suspected matters such as trihalomethanes, moreover the hazard index which is calculated by dividing the CDI by the acceptable daily reference dose (R/sub f/D) was determined for the risk assessment. As a result, in the case of 95 percentile excess cancer risk, it was shown that the excess cancer risk for dichlorobromomethane in the Nakdong river region is highest among the tested samples as 8.73 x 10/sup -6/. The 95 percentile total hazard index (the sum of individual hazard indices considering R/sub f/D), in addition, was below 1.0 for all samples, and therefore it was assessed that water samples taken from treatment plants of four major rivers are not harmful.

Determination of Volatile Organic Compounds emitted from Municipal Solid Waste Landfill Site by Thermal Desorption-Cryofocusing-GC/FID/FPD (열탈착-저온농축-GC/FID/FPD에 의한 도시 생활폐기물 매립장에서 방출되는 휘발성 유기화합물의 측정에 관한 연구)

  • Kim, Man-Goo;Jung, Young-Rim;Seo, Young-Min;Nam, Sung-Hyun;Kwon, Young-Jin
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.274-285
    • /
    • 2001
  • In this study, the thermal desorption-cryofocusing-gas chromatographic(TD-C-GC) method was developed for determination of volatile organic compounds(VOCs) in ambient air and was applied at the municipal solid waste landfill sites. On-column cryofocusing was possible only with a 100 ml dewars bottle in TD-C-GC method with a stainless steel column. However, high operating pressure was needed for purging VOCs from the absorbent trap, which was able to solve by pressure programming with a electric pressure controller. By using both pressure and temperature programming brought increasing of resolution power in on-column cryofocusing method, but the high pressure caused a leakage of sample tube with repeated use. A loop cryofocusing devise was also developed and compared with the direct on-column method. In loop cryofocusing method, VOCs were concentrated on a 0.8mm i.d. loop which is located between the injector and separation column by using liquid nitrogen. In order to purge VOCs from the absorbent trap, only 0.4 psi of pressure was need in the loop cryofocusing method. Dual detection system was applied for the analysis of VOCs; a FID was used for hydrocarbons and a FPD was used for sulfur-containing compounds. Qualitative analysis was done by on-column cryofocusing GC-MS system. Among the large number of VOCs, toluene was the most abundant. Hydrogen sulfide, dimethyl sulfide, carbon disulfide, dimethyl disulfide and methyl propyl disulfide were detected at landfill site by FPD.

  • PDF

A Study on the Flavor Constituents of the Citron (Citrus junos) (유자의 향미성분에 관한 연구)

  • Kang Seong-Koo;Jang Mi-Jeong;Kim Yong-Doo
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.204-210
    • /
    • 2006
  • To accept basic data of utilizing of citron (Citrus junos) as a raw material of industrial produce, major chemical components of citron were investigated. Weight ration of poet flesh md seed of citron were 44.7, 42.9 and 12.4%, respectively. Comparing proximate composition of peel and flesh of citron, peel showed higher in crude protein crude fat and crude ash than flesh but lower in moisture, carbohydrate and soluble solid. The major free sugars of citron were fructose, glucose and sucrose. Peel contained higher in sucrose than flesh, but lower in fructose and glucose. The content of K md P were 309 and 15.9 mg% in peel and 175 and 22.4 mg% in fresh, respectively. The main organic acids of citron were citrate, malate and oxalate. Total organic acid content of flesh (6.6%) was higher than that of peel (4.6%). Total amino acid content of peel and flesh were 671.9 and 315.7 mg%, respectively. Free amino acid content of peel and flesh were 324.3 and 280.7 mg%, respectively, and the major ones were proline, serine, glutamic acid, aspartic acid, and histidine. Total 49 volatile compounds were detected and 26 of these ones were identified in cion. The major volatile component of citron was limonene, which consists of 80% among the total volatiles in peel by all extract methods.

A Correlation Study between the Environmental, Personal Exposures and Biomarkers for Volatile Organic Compounds (대기 중 휘발성유기오염물질의 환경, 개인 및 인체 노출의 상관성 연구)

  • Jo, Seong-Joon;Shin, Dong-Chun;Chung, Yong;Breysse, Patrick N.
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.197-205
    • /
    • 2002
  • Volatile organic compounds (VOCs) are an important public health problem throughout the world. Many important questions remain to be addressed in assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in the analytical determination of VOCs. Personal exposure measurements are needed to evaluate the relationship between microenvironmental concentrations and actual exposures. It is also important to investigate exposure frequency, duration, and intensity, as well as personal exposure characteristics. In addition to air monitoring, biological monitoring may contribute significantly to risk assessment by allowing estimation of absorbed doses, rather than just the external exposure concentrations, which are evaluated by environmental and personal monitoring. This study was conducted to establish the analytic procedure of VOCs in air, blood, urine and exhaled breath and to evaluate the relationships among these environmental media. The subjects of this study were selected because they are occupationally exposed to high levels of VOCs. Environmental, personal, blood, urine and exhalation samples were collected. Purge & trap, thermal desorber, gas chromatography and mass selective detector were used to analyze the collected samples. Analytical procedures were validated with the“break through test”, 'quot;recovery test for storage and transportation”,“method detection limit test”and“inter-laboratory QA/QC study”. Assessment of halogenated compounds indicted that they were significantly correlated to each other (p value < 0.01). In a similar manner, aromatic compounds were also correlated, except in urine sample. Linear regression was used to evaluate the relationships between personal exposures and environmental concentrations. These relationships for aromatic and halogenated are as follows: Halogen $s_{personal}$ = 3.875+0.068Halogen $s_{environmet}$, ($R^2$= .930) Aromatic $s_{personal}$ = 34217.757-31.266Aromatic $s_{environmet}$, ($R^2$= .821) Multiple regression was used to evaluate the relationship between exposures and various exposure deter-minants including, gender, duration of employment, and smoking history. The results of the regression model-ins for halogens in blood and aromatics in urine are as follows: Halogen $s_{blood}$ = 8.181+0.246Halogen $s_{personal}$+3.975Gender ($R^2$= .925), Aromatic $s_{urine}$ = 249.565+0.135Aromatic $s_{personal}$ -5.651 D.S ($R^2$ = .735), In conclusion, we have established analytic procedures for VOC measurement in biological and environmental samples and have presented data demonstrating relationships between VOCs levels in biological media and environmental samples. Abbreviation GC/MS, Gas Chromatography/Mass Spectrometer; VOCs, Volatile Organic Compounds; OVM, Organic Vapor Monitor; TO, Toxic Organicsapor Monitor; TO, Toxic Organics.

Irradiation-induced Volatile Compounds in Irradiated Chicken by P&T Method (P&T법에 의한 닭고기의 방사선 유래 휘발성 조사물질 구명)

  • Kim, Hun;Cho, Woo-Jin;Jung, Yeon-Jung;Lee, Young-Mi;Jeong, Eun-Jeong;Yoo, Young-Jae;Byun, Myung-Woo;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.6
    • /
    • pp.958-964
    • /
    • 2002
  • To select the irradiation-induced marker components from volatile flavor compounds in irradiated chicken, and complement the extraction problems of liquid continuous extraction (LLCE) method, the volatile compounds of irradiated (0,1,3,5 and 10 kGy) chicken were analyzed by Purge and Trap (P&T) and gas chromatography/mass spectrometry (GC/MS) methods. A total of 119 compounds were detected in irradiated chicken, and these compounds were composed mainly of 7 aldehydes,22 ketones,8 alcohols,30 esters,36 hydrocarbons,8 aromatic compounds and 8 miscellaneous compounds. Among these, only 21 compounds were detected in both LLCE and P&T methods, and the 98 other were detected in omly P&T method. Among volatile compounds detected in irradiated chicken, only 3 compounds such as hexene (r=0.96, p<0.01), propanol (r=0.93, p<0.05) and 1,3-bis(1,1-dimethylethyl) benzene (r=0.96, p<0.05) were newly selected as marker compounds in irradiated chicken by P&T method, which showed significant and high positive correlation coefficient in the change of relative concentration according to the increment of irradiation dosage.

Characteristics of Volatile Flavor Compounds in Kochujangs with Meju and Soybean Koji during Fermentation (메주와 콩 고오지를 혼용하여 담금한 고추장 숙성중의 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1035-1042
    • /
    • 2000
  • Volatile compounds of kochujang prepared with meju and koji were analyzed by using a purge and trap method during fermentation and identified with GC-MSD. Thirteen alcohols, seventeen esters, seven acids, six aldehydes and nine others were identified. Twenty four volatile flavor detected immediately after making kochujang including 7 alcohols and 9 esters. Six volatile flavor compounds including 1 alcohol and 3 esters were more found after 30 day of fermentation and increased to forty nine of volatile compounds after 150 days. Six alcohols such as ethanol, 3-methyl-butanol, 2-methyl-1-propanol, 1-butanol and nine esters such as ethyl acetate, ethyl butyrate, ethyl caproate, ethyl carpylate and seven others were commonly found through the fermentation period. Peak area (%) of 1-butanol was the highest one among the volatile flavor compounds after 30 day of fermentation and ethanol showed the highest peak area after 60-90 day and 150 day of fermentation, and 3-methyl-1-butanol showed the highest peak area after 120 day of fermentation, 2-Methyl-1-propanol, ethyl butyrate, ethyl acetate, acetaldehyde, ethoxyethene, ethenone, methylbenzene were detected in the kochujang during the fermentation.

  • PDF

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.