• Title/Summary/Keyword: purge & trap gc-ms

Search Result 27, Processing Time 0.025 seconds

Analysis of Volatile Organic Compounds in Water by Modified Injection Mode for Purge & Trap-GC/MS Method (Purge & Trap-GC/MS 분석법의 주입방식 개선에 의한 물 중의 휘발성 유기물 분석)

  • Jeon, Chi Wan;Lee, Sang Hak;Eum, Chul Hun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.635-642
    • /
    • 1995
  • Improved sample introduction system has been investigated for the determination of volatile organic compounds in water using a purge & trap preconcentration apparatus and a capillary gas chromatography/mass spectrometry. The present limitations associated with the moisture control module and cryorefocusing system suggested by EPA were discussed. To solve the problems such as improper separation of peaks due to the adsorption of water and contamination of purge & trap system, a more efficient connection system between the purge & trap apparatus and the gas chromatograph was introduced and the optimum operational conditions were suggested. A carbopack B/carboxen 1000 and 1001 trap was used for the purge & trap procedure and a custom made crosslinked dimethyldiphenylpolysiloxane capillary column was used for the separation of compounds. Accuracy and precision of the method suggested in this report were examined and the method detection limit of each compound was proposed for the simultaneous determination of 54 volatile organic compounds in water.

  • PDF

Comparison Solid Phase Microextraction with Purge & Trap on the GC/MS Analysis of Volatile Organic Compounds in Biota Samples (Solid Phase Microextraction 및 Purge & Trap을 이용한 생물시료 중 휘발성 유기화합물의 GC/MS 분석비교)

  • Ahn, Yun-Gyong;Seo, Jong-Bok;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.392-399
    • /
    • 2001
  • The analysis of n-butylbenzene and 1,2-dibromo-3-chloropropane (DBCP) as volatile organic compounds in biota samples was performed by gas chromatography/mass spectrometry-selected ion monitoring mode. The target compounds, n-butylbenzene and DBCP, in biota samples were extracted by headspace solid phase microextraction (SPME) with $100{\mu}m$ polydimethyl siloxane (PDMS) fiber and purge & trap method. The extraction recoveries of these compounds obtained by SPME was 85.8% for n-butylbenzene and 92.4% for DBCP, respectively. Each value of method detection limit were $0.15{\mu}g/kg$ and $0.05{\mu}g/kg$, respectively. While in the case of purge & trap method, the extraction recovery was 115.2% for n-butylbenzene, 80.9% for DBCP and method detection limit were $0.04{\mu}g/kg$ and $0.70{\mu}g/kg$, respectively. The extraction yields and detection limits of these compounds obtained by purge & trap were equivalent to those by SPME.

  • PDF

Analysis of Volatile Flavor Compounds in Cow's Milk by Purge & Trap Method (Purge & Trap 법에 의한 국내산 우유 중의 휘발성 향기성분 분석)

  • Jun Jang-Young;Kim Sung-Han;Kwak Byung-Man;Ahn Jang-Hyuk;Kong Un-Young
    • Food Science of Animal Resources
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2005
  • Purge & Trap method was applied to perform more simple and rapid detection for analysis of volatile flavor compounds in milk. Maximal sampling of 30 mL milk for glass flask sparger was treated by He gas purging for 2 hours. Reported major volatile compounds were detected by GC-MS after 2 hours absorption and desorbed from Purge & Trap equipped with Tenax trap. Volatile flavor compounds were analyzed by Purge & Trap and GC-MS to investigate the changes of flavor components in milk between raw and deodorized milk. Fourteen volatile compounds including acetaldehyde, ethanol, 2-propanone, dimethyl sulfide, isobutanal, 3-methyl 2-butanone, 2-butanone, 3-methyl butanal, pentanal, 3-hydroxy-2-butanone, methyl disulfide, hexanal, and 2 others were detected. Six compounds such as ethanol, dimethyl sulfide, pentanal, 3-hydroxy-2-butanone, and methyl disulfide were completely eliminated after deodorization treatment. Four compounds such as 3-methyl 2-butanone, 2-butanone, 3-methyl butanal, and an unknown compound 81 (M/sup +/) were also decreased after raw milk was deodorized. The other four compounds such as acetaldehyde, 2-propanone, hexanal, and an unknown compound (M/sup +/) were not decreased.

Determination of Methylmercury in Biological Samples Using Dithizone Extraction Method Followed by Purge & Trap GC-MS

  • Lee, Jung-Sub;Ryu, Yoon-Jung;Park, Jae-Sung;Jeon, Sung-Hwan;Kim, Sam-Cwan;Kim, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2293-2298
    • /
    • 2007
  • In this study, a dithizone extraction technique involving purge & trap GC-MS was developed for the determination of methylmercury in biological samples, especially blood and fish. After alkaline digestion, methylmercury in biological samples was extracted into dithizone and back-extracted into aqueous sulfide solution. The extracted methylmercury was converted to the volatile ethyl derivative, purged and trapped onto a solid-phase collection medium, and then introduced into the GC-MS system. The determined MDLs of the established method were 0.9 ng·g?1 for biological samples and its accuracy and precision were found to be 93% and 3.8%, respectively. The method was validated by analysis of CRMs such as SRM 966, BCR 463 and IAEA 407 and all analytical results were within certified ranges with average RSDs of less than 6%. The analytical results of field-sampled fish also showed that the method can be successfully used as an alternative for commonly used distillation method followed by GC-CVAFS detection.

Volatile Flavor Compounds in Commercial Milk by Static Headspace, Purge and Trap, Solid-Phase Microextraction (Static headspace, purge & trap 및 solid-phase microextraction을 이용한 시판우유의 휘발성 향기성분 분석)

  • Lee, Hong-Min;Lee, Ki-Woong;Chang, Chi-Hoon;Kim, Sung-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.738-741
    • /
    • 2006
  • Volatile flavor compounds in commercial sterilized milk were analyzed and identified by static headspace, purge-and-trap, and solid-phase microextraction (SPME) methods. About 20 volatile compounds were identified by GC/MS, and aldehydes and ketones were the most distinctive and abundant compounds. Static headspace analysis allowed the identification of only the most abundant compounds, such as acetone. Five ketones (acetone, 2-butanone, 2-pentanone, 2-heptanone, 2-nonanone), four aldehydes (2-methylbutanal, pentanal, hexanal, benzaldehyde) and dimethyl sulfide, all of which were responsible for off-flavor in milk, were found by the purge-and-trap and SPME methods. The two methods differed little in their release of these compounds, but they yielded different amounts in the extraction.

Determination of Organic Pollutants in Dyeing Wastewater (염색폐수 중의 유기오염물질 분석)

  • Yook, Keun-Sung
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.332-342
    • /
    • 1997
  • Fifteen volatile organic pollutants were spiked in blank water at the concentration of $20{\mu}g/L$ and analyzed with Purge and Trap and GC/MS. As a result, the overall mean recovery of 100% was obtained with a mean relative standard deviation of 3.6%. The method detection limits were in the range of $1.9{\sim}3.3{\mu}g/L$. In the wastewater analysis of Banwol dyeing comlex, 15 organic compounds were identified and three of these were quantified. Among the compounds identified, only trichloroethylene and tetrachloroethylene are regulated in wastewater by the Korea Ministry of Environment. But, the concentration of these two compounds were below the government allowance level.

  • PDF

Volatile Components of Pine Needle(Pinus densiflora S.) by Purge and Trap Headspace (Purge and Trap Headspace 법에 의한 솔잎(Pinus densiflora S.)의 휘발성 성분)

  • Lee Jae-Gon;Lee Chang-Gook;Jang Hee-Jin;Kwag Jae-Jin
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.260-265
    • /
    • 2004
  • Volatile components of pine needle(Pinus densiflora S.) were isolated by purge & trap headspace technique and analyzed by gas chromatography-mass spectrometry(GC-MS). And then volatile components were extracted for 2 hr and 20 hr at the two different temperature settings: room temperature and 60$^{\circ}C$. A total of 61 volatile components were identified by the four different conditions. These compounds are classified into six categories in terms of chemical functionality: 35 hydrocarbons, 16 alcohols, 4 carbonyls, 2 esters, 1 acid and 3 ethers. The major components were ${\alpha}$-pinene(1.5~15.7%), ${\beta}$-myrcene(13.2~15.6%), ${\beta}$-phellandrene(l2.0~16.0%) and cis-3-hexenol(4.0~18.3%). In the comparison of the four extraction conditions, longer extraction can be effective to extract components that have a high boiling point, but proved useless in obtaining low boiling point components. As a result of these experiments under the four different conditions, the 20 hr extraction at room temperature appeared to be the most optimized condition for the analysis of volatile compounds by using the purge & trap headspace technique.

Decomposition of volatile aromatic compounds by photochemical treatment (광화학적 방법을 이용한 휘발성 방향족 화합물의 분해)

  • Kim, Jong Hyang
    • Clean Technology
    • /
    • v.4 no.1
    • /
    • pp.35-44
    • /
    • 1998
  • Photodecomposition behaviors of volatile organic compounds (VOCs ; benzene, toluene, ethylbenzene and xylenes) over UV irradiation and UV irradiation with $TiO_2$ powder catalyst were studied and the extent of degradation were also investigated under various reaction conditions. The reactions were conducted in a quartz annular reactor equipped with a medium pressure mercury lamp. As a result, the extents of degradation were 92% for toluene and ethylbenzene, 83% for benzene, and 82% for xylenes under UV irradiation. And they were 92% for toluene, 82% for xylene and ethylbenzene, and 53% for benzene under UV irradiation with $TiO_2$ powder. Analyses of reacted samples by FID-gas chromatograph with Purge & Trap concentrator and GC-MS indicated that the aromatics formed many intermediates.

  • PDF

Analysis of Volatile Components of a Chicken Model Food System in Retortable Pouches (레토르트 파우치 계육 모형식품의 휘발성분 분석)

  • Choi, Jun-Bong;Chung, Ha-Yull;Kong, Un-Young;Moon, Tae-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.772-778
    • /
    • 1996
  • In order to investigate changes of flavor during food sterilization in retortable pluches, a model food system consisting of 50% chicken breast meat, 1% salt and 49% chicken stock was analyzed before and after retorting using GC and GC-MS. In the analysis of the volatile components collected by the nitrogen purge and trap technique before and after retorting, a total of 53 peaks were observed on chromatograms and 42 peaks were identified. Among the 42 peaks identified were 17 caused by aldehydes, 9 by hydrocarbons, 8 by alcohols, 6 by ketones, 1 by furan and 1 by terpene. Analysis of the data obtained from our model food system strongly suggested that the compounds responsible for retort flavor are 2-heptanone, 2-pentyl furan and various ketones.

  • PDF