• Title/Summary/Keyword: pure magnesium hydride

Search Result 2, Processing Time 0.014 seconds

Hydrogen Storage Properties of Pure MgH2

  • Kwak, Young Jun;Lee, Seong Ho;Park, Hye Ryoung;Song, Myoung Youp
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.266-270
    • /
    • 2013
  • The hydrogen storage properties of pure $MgH_2$ were studied and compared with those of pure Mg. At the first cycle, pure $MgH_2$ absorbed hydrogen very slowly at 573 K under 12 bar $H_2$. The activation of pure $MgH_2$ was completed after three hydriding-dehydriding cycles. At the $4^{th}$ cycle, the pure $MgH_2$ absorbed 1.55 wt% H for 5 min, 2.04 wt% H for 10 min, and 3.59 wt% H for 60 min, showing that the activated $MgH_2$ had a much higher initial hydriding rate and much larger $H_a$ (60 min), quantity of hydrogen absorbed for 60 min, than did activated pure Mg. The activated pure Mg, whose activation was completed after four hydriding-dehydriding cycles, absorbed 0.80 wt% H for 5 min, 1.25 wt% H for 10 min, and 2.34 wt% H for 60 min. The particle sizes of the $MgH_2$ were much smaller than those of the pure Mg before and after hydriding-dehydriding cycling. The pure Mg had larger hydrogen quantities absorbed at 573K under 12 bar $H_2$ for 60 min, $H_a$ (60 min), than did the pure $MgH_2$ from the number of cycles n = 1 to n = 3; however, the pure $MgH_2$ had larger $H_a$ (60 min) than did the pure Mg from n = 4 to n = 6.

Hydrogen Absorption at a Low Temperature by MgH2 after Reactive Mechanical Grinding

  • Song, Myoung Youp;Lee, Seong Ho;Kwak, Young Jun;Park, Hye Ryoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.129-134
    • /
    • 2014
  • Pure $MgH_2$ was milled under a hydrogen atmosphere (reactive mechanical grinding, RMG). The hydrogen storage properties of the prepared samples were studied at a relatively low temperature of 423 K and were compared with those of pure Mg. The hydriding rate of the Mg was extremely low (0.0008 wt% H/min at n = 4), and the $MgH_2$ after RMG had higher hydriding rates than that of Mg at 423 K under 12 bar $H_2$. The initial hydriding rate of $MgH_2$ after RMG at 423 K under 12 bar $H_2$ was the highest (0.08 wt% H/min) at n = 2. At n = 2, the $MgH_2$ after RMG absorbed 0.39 wt% H for 5 min, and 1.21 wt% H for 60 min at 423K under 12 bar $H_2$. At 573 K under 12 bar $H_2$, the $MgH_2$ after RMG absorbed 4.86 wt% H for 5 min, and 5.52 wt% H for 60 min at n = 2. At 573 K and 423 K under 1.0 bar $H_2$, the $MgH_2$ after RMG and the Mg did not release hydrogen. The decrease in particle size and creation of defects by reactive mechanical grinding are believed to have led to the increase in the hydriding rate of the $MgH_2$ after RMG at a relatively low temperature of 423 K.