• Title/Summary/Keyword: pure magnesium

Search Result 73, Processing Time 0.024 seconds

Magnetite and Scheelite-Bearing Skarns in Ulsan Mine, Korea (울산 광산의 철-텅그스텐 스카른화작용)

  • Choi, Seon-Gyu;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.41-54
    • /
    • 1993
  • The Ulsan Fe-W deposit, which can be classified as a calcareous skarn deposit, is represented by ore pipe consisting principally of magnetite and lesser amounts of scheelite with minor sulphides, sulphosaits, arsenides, sulpharsenides, etc. At Ulsan mine, metasomatic processes of skarn growth may be divided broadly into two stages based on the paragenetic sequence of calc-silicate minerals and their chemical composition; early and late skarn stages. Early stage has started with the formation of highly calcic assemblages of wollastonite, diopsidic clinopyroxene and nearly pure grossular, which are followed by the formation of clinopyroxenes with salite to ferrosalite composition and grandite garnets with intermediate composition. Based on these calc-silicate assemblages, the temperatures of early skarn formations have been in the ranges of $550^{\circ}$ to $450^{\circ}$. The calc-silicate assemblages formed during the earlier half period of late skarn stage show the enrichment of notable iron and slight manganese, and the depletion of magnesium; clinopyroxenes are hedenbergitic, and grandite garnets are andraditic. The formation temperatures during this skarn stage are inferred to have been in the range of $430^{\circ}$ to $470^{\circ}C$ at low $X_{CO_2}$ by data from fluid inclusions of late andraditic garnets. The later half period of late skarn stage is characterized by the hydrous alteration of pre-existing minerals and the formation of hydrous silicates. The main iron-tungsten mineralization representing prominent deposition of magnetite immediately followed by minor scheelite impregnation has taken place at the middle of early skarn stage, while complex polymetallic mineralization has proceeded during and after the late skarn stage. Various metals and semimetals of Fe, Ni, Co, Cu, Zn, As, Mo, Ag, In, Sn, Sb, Te, Pb and Bi have been in various states such as native metal, sulphides, arsenides, sulphosaits, sulpharsenides and tellurides.

  • PDF

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

Studies on the Pulping Characteristics of Larchwood (Larix leptolepis Gordon) by Alkaline Process with Additives (첨가제(添加劑) 알칼리 법(法)에 의한 일본 잎갈 나무의 펄프화(化) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Kie-Pyo;Shin, Dong-Sho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.3-30
    • /
    • 1979
  • Larch ($\underline{Larix}$ $\underline{leptolepis}$ GORDON), one of the major afforestation species in Korea in view of its growing stock and rate of growth, is not favored as a raw material for pulp due to its low yield of pulp and difficulties with bleaching arising from the high content of extractives in wood, and the high heartwood ratio and the active phenolics, respectively. The purpose of this study is to investigate the characteristics of firstly pulping with various additives of cellulose protector for the yield of pulp, and secondly bleaching with oxygen for chlotination-alkali extraction of five stage-sequence to reduce chlorine compounds in bleaching effluents. The kraft cooking liquor for five age groups of larchwood was 18 percent active alkali with 25 percent sulfidity and 5 : 1 liquor-to-wood ratio, and each soda liquor for sap-and heart-wood of the 15-year-old larchwood was 18 percent alkali having one of the following cellulose protectors as the additive; magnesium sulfate ($MgSO_4$, 2.5%), zinc sulfate ($ZnSO_4$, 2.5%), aluminium sulfate ($Al_2(SO_4)_3$, 2.5%), potasium iodide (KI, 2.5%), hydroquinone (HQ, 2.5%), anthraquinone (AQ, 0.1%) and ethylene diamine (EDA, 2.5%). Then each anthraquinone-soda liquor for the determination of suitable cooking condition was the active alkali level of 15, 17 and 19 percent with 1.0, 0.5 and 0.1 percent anthraquinone, respectively. The cooking procedure for the pulps was scheduled to heat to 170$^{\circ}C$ in 90 minutes and to cook 90 minutes at the maximum temperature. The anthraquinone-soda pulps from both heartwood and sapwood of 15-year-old larchwood prepared with 0.5 percent anthraquinone and 18 percent active alkali were bleached in a four-stage sequency of OCED. (O: oxygen bleaching, D: chlorine dioxide bleaching and E: alkali extraction). In the first stage oxygen in atmospheric pressure was applied to a 30 percent consistency of pulp with 0.1 percent magnesium oxide (MgO) and 3, 6, and 9 percent sodium hydroxide on oven dry base, and the bleached results were compared pulps bleached under the conventional CEDED (C: chlorination). The results in the study were summarized as follows: 1. The screened yield of larch kraft pulp did not differ from particular ages to age group, but heartwood ratio, basic density, fiber length and water-extractives contents of wood and the tear factor of the pulp increased with increasing the tree age. The total yield of the pulp decreased. 2. The yield of soda pulp with various chemicals for cellulose protection of the 15-year-old larchwood increased slightly more than that of pure soda pulp and was slightly lower than that of kraft pulp. The influence of cellulose protectors was similar to the yield of pulps from both sapwood and heartwood. The effective protectors among seven additives were KI, $MgSO_4$ and AQ, for which the yields of screened pulp was as high as that of kraft pulp. Considering the additive level of protector, the AQ was the most effective in improving the yield and the quality of pulp. 3. When the amount of AQ increased in soda cooking, the yield and the quality of the pulp increased but rejects in total yield increased with decreasing the amount of active alkali from 19 to 15 percent. The best proportion of the AQ seemed to be 0.5 percent at 17 percent active alkali in anthraquinone-soda pulping. 4. On the bleaching of the AQ-soda pulp at 30 percent consistency with oxygen of atomospheric pressure in the first stage of the ODED sequence, the more caustic soda added, the brighter bleached pulp was obtained, but more lignin-selective bleaching reagent in proportion to the oxygen was necessary to maintain the increased yield with the addition of anthraquinone. 5. In conclusion, the suitable pulping condition for larchwood to improve the yield and quality of the chemical pulp to the level for kraft pulp from conventional process seemed to be. A) the selection of young larchwood to prevent decreasing in yield and quality due to the accumulation extractives in old wood, B) the application of 0.5 percent anthraquinone to the conventional soda cooking of 18 percent active alkali, and followed, C) the bleaching of oxygen in atmospheric pressure on high consistency (30%) with 0.1 percent magnesium oxide in the first stage of the ODED sequence to reduce the content of chlorine compounds in effluent.

  • PDF