• Title/Summary/Keyword: pure gas

Search Result 767, Processing Time 0.028 seconds

The Electrical and CO Gas Sensing Properties of SnO$_2$-WO$_3$Composite Ceramics (SnO$_2$-WO$_3$복합체의 전기적특성과 일산화탄소 가스 감응특성)

  • 김태원;정승우;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.347-349
    • /
    • 1997
  • In order to investigate CO sensing property of a SnO$_2$-WO$_3$composite ceramic. we prepared pure SnO$_2$and WO$_3$added SnO$_2$compostie ceramics. Using XRD and SEM, a phase analysis and microstructure were investigated. The resistances as a function of gas atmosphere were measured by High Voltage Measure/source Unit. The measured 1000ppm CO gas sensitivity of SnO$_2$-WO$_3$composite ceramics were smaller than that of pure SnO$_2$.

  • PDF

Amorphization Process of Cr-N Alloy System by Mechanical Alloying (기계적 합금화에 의한 Cr-N계 합금의 비정질화 과정)

  • 이충효;이성희;이상진;권영순
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.288-293
    • /
    • 2003
  • Mechanical alloying (MA) by high energy ball mill of Pure chromium Powders was carried out under the nitrogen gas atmosphere. Cr-N amorphous alloy powders have been produced through the solid-gas reaction subjected to MA. The atomic structure during amorphization process was observed by X-ray and neutron diffractions. An advantage of the neutron diffraction technique allows us to observe the local atomic structure surrounding a nitrogen atom. The coordination number of metal atoms around a N atom turns out to be 5.5 atoms. This implies that a nitrogen atom is located at both of centers of the tetrahedron and octahedron formed by metal atoms to stabilize an amorphous Cr-N structure. Also, we have revealed that a Cr-N amorphous alloy may produced from a mixture of pure Cr and Cr nitrides powders by solid-solid reaction during mechanical alloying.

Highly Sensitive Trimethylamine Sensing Characteristics of V-doped NiO Porous Structures (바나듐이 도핑된 NiO 다공성 구조의 고감도 Trimethylamine 감응 특성)

  • Park, Sei Woong;Yoon, Ji-Wook;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.218-222
    • /
    • 2016
  • Pure and V-doped NiO porous structures were prepared by the evaporation-induced surfactant assembly and subsequent pyrolysis of assembled structures, and their gas sensing characteristics were investigated. Pure NiO porous structures showed negligible gas responses (S=$R_g/R_a$, $R_g$: sensor resistance in analytic gas; $R_a$: sensor resistance in air) to 5 ppm trimethylamine (S=1.17) as well as other interfering gases such as ethanol, p-xylene, toluene, benzene and formaldehyde (S=1.02-1.13). In contrast, the V-doped NiO porous structures exhibited a high response and selectivity to 5 ppm trimethylamine (S=14.5) with low cross-responses to other interfering gases (S=4.0-8.7) at $350^{\circ}C$. The high gas response of V-doped NiO porous structures to trimethylamine was explained by electronic sensitization, that is, the increase in the chemoresistive variation due to the decrease in the hole concentration. The enhanced selectivity to trimethylamine was discussed in relation to the interaction between basic trimethylamine gas and acidic V catalysts.

Fabrication of NO sensor integrated SiC micro heaters for harsh environments and its characteristics (SiC 마이크로 히터가 내장된 극한 환경용 NO 센서의 제작과 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.197-201
    • /
    • 2010
  • This paper describes the fabrication and characteristics of a NO sensor using ZnO thin film integrated 3C-SiC micro heater based on polycrystalline 3C-SiC thin film of operation in harsh environments. The sensitivity, response time, and operating properties in high temperature and voltages of NO sensors based SiC MEMS are measured and analyzed. The sensitivity of device with pure ZnO thin film at the heater operating power of 13.5 mW ($300^{\circ}C$) is 0.875 in NO gas concentration of 0.046 ppm. In the case of Pt doping, the sensitivity of at power consumption of 5.9 mW ($250^{\circ}C$) was 1.92 at same gas flow rate. The ZnO with doped Pt was showed higher sensitivity, lower working temperature and faster adsorption characteristics to NO gas than pure ZnO thin film. The NO gas sensor integrated SiC micro heater is more strength than others in high voltage and temperature environments.

The Study of Character of Electron Drift Velocity in CF4 Molecular Gas by the Boltzmann Equation (볼츠만 방정식에 의한 CF4 분자가스의 전자이동속도 특성에 관한 연구)

  • Song, Byoung-Doo;Ha, Sung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1252-1257
    • /
    • 2004
  • This paper describes the information for quantitative simulation of weakly ionized plasma. In previous paper, we calculated the electron transport coefficients by using two-term approximation of Boltzmann equation. But there is difference between the result of the two-term approximation of the Boltzmann equation and experiments in pure CF$_4$ molecular gas and in CF$_4$+Ar gas mixture. Therefore, In this paper, we calculated the electron drift velocity (W) in pure CF$_4$ molecular gas and CF$_4$+Ar gas mixture (1 %, 5 %, 10 %) for range of E/N values from 0.17~300 Td at the temperature was 300 K and pressure was 1 Torr by multi-term approximation of the Boltzmann equation by Robson and Ness. The results of two-term and multi-term approximation of the Boltzmann equation have been compared with each other for a range of E/N.

Highly Sensitive and Fast-Responding Ethanol Sensor using Au Doped-In2O3 Hollow Spheres

  • Seong-Young Jeong
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.242-247
    • /
    • 2024
  • Pure and 0.3 wt% Au-doped In2O3 hollow spheres were synthesized via ultrasonic spray pyrolysis of droplets containing an In-source and sucrose in air and their gas sensing characteristics to 1 ppm ethanol, 1 ppm toluene, 1 ppm xylene, 2 ppm nitrogen dioxide (NO2), and 30 ppm carbon monoxide (CO) were measured at 400 - 450℃. The pure In2O3 hollow spheres exhibited relatively low gas responses and sluggish recovery kinetics. In contrast, the doping of Au into In2O3 hollow spheres significantly increased the gas response (S= resistance ratio) to 1 ppm ethanol (S= 20.6) at 400℃ with low cross-responses (S = 1.3-8.8) to other interference gases. Furthermore, the hollow spherical morphology of In2O3 provides a large surface area and facilitates rapid gas diffusion, resulting in fast response and recovery times. The sensor exhibited excellent performance with a low detection limit of 1.6 ppb. These findings indicate that the Au-In2O3 hollow spheres are promising candidates for advanced ethanol-sensing applications, particularly in breath-alcohol monitoring for ignition interlock devices.

Development of nitrogen and oxygen certified reference materials in 10 μmol/mol for the purity evaluation

  • Ahn, Byung Soo;Moon, Dong Min;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.68-75
    • /
    • 2020
  • We have developed 10 μmol/mol nitrogen and oxygen certified reference materials (CRMs) in helium, as a SI-traceable gas standard for a quantifying of impurities in pure gases for the first time in Korea. The standard gas mixtures of nitrogen and oxygen were prepared in 5000 μmol/mol and sequentially were diluted to 250 μmol/mol and 10 μmol/mol according to the gravimetric preparation. In each dilution step, two cylinders of CRMs were prepared. The verification of internal consistency among the prepared gas mixtures was performed by using GC-TCD. The amount fractions and those expanded uncertainties (k = 2) of nitrogen and oxygen in the standard gas mixtures were (10.12 ± 0.08) μmol/mol and (10.18 ± 0.08) μmol/mol for nitrogen, and (9.88 ± 0.06) μmol/mol and (9.94 ± 0.06) μmol/mol for oxygen, respectively. We have conducted a purity assessment of two commercial helium gases using developed CRMs. As the results of the purity assessment, nitrogen and oxygen were detected by (1.66 ± 0.03) μmol/mol and (0.31 ± 0.02) μmol/mol, respectively, as the impurities in one of the pure helium.

A Study on the Methane Hydrate Formation Using Natural Zeolite (천연제올라이트를 이용한 메탄 하이드레이트 생성에 대한 연구)

  • Park, Sung-Seek;An, Eoung-Jin;Kim, Dae-Jin;Jeon, Yong-Han;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.259-264
    • /
    • 2011
  • Gas hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. $1\;m^3$ hydrate of pure methane can be decomposed to the methane gas of $172\;m^3$ and water of $0.8\;m^3$ at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store of natural gas in large quantity. Especially the transportation cost is known to be 18~25% less than the liquefied transportation. However, when methane gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and the increment of the amount of captured gas by adding zeolite into pure water. The results show that when the zeolite of 0.01 wt% was added to distilled water, the amount of captured gas during the formation of methane hydrate was about 4.5 times higher than that in distilled water, and the methane hydrate formation time decreased at the same subcooling temperature.

A Study on the Carburization Mechanism of Iron by Solid Carbon (고체탄소(固體炭素)에 의한 철(鐵)의 침탄기구(浸炭機構)에 대(對)한 연구(硏究))

  • Kwon, Ho-Young;Cho, Tong-Rae;Kang, Sei-Sun
    • Journal of Korea Foundry Society
    • /
    • v.8 no.3
    • /
    • pp.287-295
    • /
    • 1988
  • The experiment was carried out for the purpose of studying the carburization of pure iron ingot and sintered iron powder by solid carbon in the atmosphere of CO gas. The volocity of carburization was estimaed by the diffusion coefficient D calculated by carburization equation. The results obtained were as follow: 1. The higher the carburization temperature, carburization depth and carbon concentration were increased, and the melting zone which had $2.8{\sim}3.4%C$ at the $3{\sim}4mm$ from interface of carburization was formed at $1300^{\circ}C$. 2. The main carburization mechanism of pure iron ingot and the sintered iron powder were proceeded by CO gas up to $1100^{\circ}C$, solid carbon over than $1300^{\circ}C$, respectively. 3. The main carburization mechanism of pure iron ingot at $1200^{\circ}C$ was proceeded by solid carbon, and sintered iron powder was proceeded bs CO gas, however, in case the reaction time, the carburization was proceeded by solid carbon over than 5hrs. 4. The diffusion coefficient D of carbon were $0.559{\times}10^{-6}cm^2.sec^{-1}$ at $1100^{\circ}C$, $0.237{\times}10^{-6}cm^2.sec^{-1}$ at $1200^{\circ}C$, $0.087{\times}10^{-6}cm^2.sec^{-1}$ at $1300^{\circ}C$, in case of pure iron ingot carburized. 5. The diffusion coefficient D of carbon were $0.124\;cm^2.sec^{-1}$ at $1100^{\circ}C$, $0.102\;cm^2.sec^{-1}$ at $1200^{\circ}C$, $0.480\;{\times}10^{-6}cm^2.sec^{-1}$ at $1300^{\circ}C$, in the case of sintered iron carburized at the pressuring $4ton\;/\;cm^2$.

  • PDF

An Experimental Study about the Running of a Gas Turbine by using Hydrogen and Oxygen (수소와 산소를 이용한 가스터빈의 구동에 관한 실험 연구)

  • Kang, J.S.;Oh, B.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.1
    • /
    • pp.5-10
    • /
    • 1997
  • Because of environmental pollution and reserve limitations of fossil fuels, several alternative energies have been developing. One of them, the hydrogen is researched as a highly probable solution. In this study pure hydrogen gas and oxygen gas are burned in combustor to reduce the emission, and a gas turbine is used. Cooling water around the combustor recovers the cooling heat loss to useful work by being expanded from liquid to vapor, being injected into the combustor and making pressure rise with working fluid to get more turbine power. Because pure hydrogen and oxygen are used, there is no carbonic emission such as CO, $CO_2$, HC nor $NO_x$, and $SO_x$. The power is obtained by turbine system, which makes lower noise and vibration than any reciprocating engine. Running of a turbine is searched under various conditions of hydrogen flow rate and water injection rate. Maximum speed of the turbine is obtained when the combustion reaches steady state. It is enable to determine the optimum rate between hydrogen flow and water injection which makes turbine run maximum speed.

  • PDF