• Title/Summary/Keyword: pure Ar

Search Result 172, Processing Time 0.024 seconds

Electron Mean Energy in CF4, CH4, Ar mixtures (CF4, CH4, Ar 혼합기체의 전자 평균에너지)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.241-245
    • /
    • 2015
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CH_4$, mixtures of $CH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy.

Diffusion Coefficients in $SF_6-Ar$ Gas used by MCS-BE Algorithm (MCS-BEq 알고리즘에 의한 $SF_6-Ar$ 혼합기체의 확산계수)

  • Kim, Sang-Nam
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.298-301
    • /
    • 2006
  • This paper describes the electron energy distribution function characteristics in $SF_6-Ar$ gas calculated for range of E/N values from $50\sim700[Td]$ by the Monte Carlo simulation(MCS) and Boltzmann equation(BE) method using a set of electron collision cross sections determined by the authors and the values of electron swarm parameters are obtained by time of flight(TOF) method. In this dissertation the results of the combined experimental and theoretical studies designed to understand and predict the spatial growth and transport coefficients for electrons in $SF_6$ and $SF_6-Ar$ mixtures have described. The ionization and attachment coefficients in pure $SF_6$ and $SF_6-Ar$ mixtures have been calculated over the range of 10$SF_6$ molecule and for Ar atom proposed by other authors. The results obtained in this work will provide valuable information on the fundamental behaviors of electrons in weakly ionized gases and the role of electron attachment in the choice of better gases and unitary gas dielectrics or electro negative components in dielectric gas mixtures.

  • PDF

Effect of Heat Treatment Environment on the Densification of Cold Sprayed Ti Coating Layer (저온 분사 공정으로 제조된 티타늄 코팅층의 치밀화에 미치는 열처리 분위기의 영향)

  • Yu, Ji-Sang;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.110-116
    • /
    • 2012
  • This study investigated the effects of annealing environment for the densification and purification properties of pure titanium coating layer manufactured by cold spraying. The annealing was conducted at $600^{\circ}C$/1 h and three kinds of environments of vacuum, Ar gas, and $5%H_2+Ar$ mixture gas were controlled. Cold sprayed Ti coating layer (as sprayed) represented 6.7% of porosity and 228 HV of hardness, showing elongated particle shapes (severe plastic deformation) perpendicular to injection direction. Regardless of gas environments, all thermally heat treated coating layers consisted of pure ${\alpha}$-Ti and minimal oxide. Vacuum environment during heat treatment represented superior densification properties (3.8% porosity, 156.7 HV) to those of Ar gas (5.3%, 144.5 HV) and $5%H_2+Ar$ mixture gas (5.5%, 153.1 HV). From the results of phase analysis (XRD, EPMA, SEM, EDS), it was found that the vacuum environment during heat treatment could be effective for reducing oxide contents (purification) in the Ti coating layer. The characteristic of microstructural evolution with heat treatment was found to be different at three different gas environments. The controlling method for improving densification and purification in the cold sprayed Ti coating material was also discussed.

Influence of Hydrogen on Al-doped ZnO Thin Films in the Process of Deposition and Annealing

  • Chen, Hao;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.93-96
    • /
    • 2009
  • The Al-doped ZnO (AZO) films were deposited on a glass substrate by RF magnetron sputtering in pure Ar and $Ar+H_2$ gas ambient at temperature of $100^{\circ}C$ and annealed in hydrogen ambient at the temperature range from 100 to 300 $^{\circ}C$, respectively. It was found that either the addition of hydrogen to the sputtering gas or the annealing treatment effectively reduced the resistivity of the AZO films. When the AZO films were annealed at the temperature of 300 $^{\circ}C$ for lhr in a hydrogen atmosphere, the resistivity decreased from $2.60{\times}10^{-3}\;{\Omega}cm$ to $8.42{\times}l0^{-4}\;{\Omega}cm$ for the film deposited in pure Ar gas ambient. Under the same annealing conditions of temperature and hydrogen ambient, the resistivity of AZO films deposited in the $Ar+H_2$ gas mixture decreased from $8.22{\times}l0^{-4}\;{\Omega}cm$ to $4.25{\times}l0^{-4}\;{\Omega}cm$. The lowest resistivity of $4.25{\times}l0^{-4}\;{\Omega}cm$ was obtained by adding hydrogen gas to the deposition and annealing process. X-ray diffraction (XRD) pattern of all films showed preferable growth orientation of (002) plane. The average transmittance is above 85 % and in the range of 400-1000 nm for all films.

Effect of Gas Sparging on Sonochemical Oxidation in a 300 kHz Sonoreactor (300 kHz 조건에서의 초음파화학적 산화반응에 대한 연속식 가스 주입 효과)

  • Seo, Jieun;Son, Younggyu
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.642-649
    • /
    • 2018
  • The effect of gas sparging on sonochemical oxidation was investigated in a 300 kHz sonoreactor under various liquid height/volume conditions ($5{\sim}30{\lambda}$, 3.4 ~ 9.0 L), determined by the wavelength of the applied frequency. The electrical input power was maintained constant for all cases . Sonochemical activity drastically decreased from $15{\lambda}$ and the liquid height of $10{\lambda}$ was suggested as the optimal height for 300 kHz without gas sparging. In our previous research, the sonochemical activity observed was five-times higher when air sparging was applied for 36 kHz. On the other hand, no enhancement was obtained at 10, 15, 25 and $30{\lambda}$ using air sparging (1, 3, and 6 L/min) for 300 kHz in this study $20{\lambda}$ and optimization of gas sparging was conducted at $20{\lambda}$ using various gases including air, Ar, $O_2$, $N_2$, and mixtures of Ar and $O_2$. It was found that gas sparging using pure Ar or pure $O_2$ resulted in lower sonochemical activity compared to that of air sparging due to the imbalance between the intensity of cavitation phenomena and the generation of oxidizing radical species. Consequently, the gas mixture of $Ar:O_2$ = 80 % : 20 % (DO saturation ${\approx}100%$) was suggested as an optimal gas sparging condition.

Effects of Substrate Temperature and the $O_2$/Ar Ratio on the Characteristics of RF Magnetron Sputtered $RuO_2$ Thin Films

  • Park, Jae-Yong;Shim, Kyu-Ha;Park, Duck-Kyun
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.43-47
    • /
    • 1996
  • $RuO_2$ thin films deposited directly on Si substrate by RF magnetron sputtering method using $RuO_2$ target have been investigated. Special interest was focused on the effect of process parameter on the surface roughness of $RuO_2$ films. Crystallization behavior and electrical properties of the films deposited at $300^{\circ}C$ were superior to those deposited at room temperature. Metallic Ru phase was formed in pure Ar and this phase had resulted poor adhesion after post annealing process in oxidizing ambient. Microstructural analysis reveals that the size of the $RuO_2$ crystallites gets smaller and the surface becomes smoother as the $O_2$ partial pressure or film thickness decreases. Irrespective of the $O_2/Ar$ ratio, resistivity of $RuO_2$ films ranged in $50~70 {\mu}{\Omega}-cm$. As the film thickness decreases, there is a thickness where the resistivity rises abruptly. Such an onset thickness turned out to be dependent n the $O_2$/Ar ratio.

  • PDF

Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas (CF4, CH4, Ar 혼합기체의 전리와 부착계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.

Analysis of the Mean Energy in $SiH_4-Ar$ Mixture Gases ($SiH_4-Ar$ 혼합기체의 평균 에너지에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.57-61
    • /
    • 2006
  • This paper calculates and gives the analysis of mean energy in pure $SiH_4,\;Ar-SiH_4$ mixture gases ($SiH_4-0.5[%],\;5[%]$) over the range of $E/N =0.01{\sim}300[Td]$, p = 0.1, 1, 5.0 [Torr] by Monte Carlo the Backward prolongation method of the Boltzmann equation using computer simulation without using expensive equipment. The results have been obtained by using the electron collision cross sections by TOF, PT, SST sampling, compared with the experimental data determined by the other author. It also proved the reliability of the electron collision cross sections and shows the practical values of computer simulation. The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $SiH_4$ and Ar, were used. The differences of the transport coefficients of electrons in $SiH_4$, mixtures of $SiH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

A Study on the Improvement of the Electron Transport Properties in $SF_{6+}Ar$ Mixtures Gas ($SF_{6+}Ar$혼합기체의 전자수송특성 개선에 관한 연구)

  • 하성철;김상남;유회영;서상현;임상원;전병훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • In this paper, the electron swarm parameters in the 0.5% and 0.2% SF\ulcorner+Ar mixtures are measured by time of flight method over the E/N(Td) range from 30 to 300(Td). The measurements have been carried out by the double shutter drift tube with variable drift distance from the cathod. A two-term approximation of the boltzmann equation analysis and Monte Carlo simulation have been also used to study electron transport coefficients. We have calculated W, $ND_L,\;ND_T,\;\alpha,\;\eta,\;\alpha-\eta$, and the limiting breakdown electric field to gas mixtures ratio in pure $SF_6$+Ar mixtures. The electron energy distribution function has been analysed in $SF_6$+Ar mixtures at E/N : 200(Td) for a case of the equilibrium region in the mean electron energy. The measured results and the calculated results have been compared each other.

  • PDF

Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel (질소 보호 가스 첨가가 하이퍼 듀플렉스 스테인리스 밀봉용접재의 마모부식 저항성에 미치는 영향)

  • Kim, Hye-Jin;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • Duplex stainless steels with nearly equal fraction of the ferrite(${\alpha}$) phase and austenite(${\gamma}$) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE=wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of ${\alpha}$-phase and ${\gamma}$-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of $Cr_2N$ are the key points of this study. The primary results of this study are as follows. The addition of $N_2$ to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the ${\alpha}$-phase to ${\gamma}$-phase, increasing the fraction of ${\gamma}$-phase as well as decreasing the precipitation of $Cr_2N$. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing $N_2$ decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of ${\gamma}$-phase and the stability of passive film according to the addition $N_2$ gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.