• Title/Summary/Keyword: purchasing model

Search Result 693, Processing Time 0.031 seconds

A Study on the Influence of User Experience of Fashion Sharing Application on Acceptance: Based on UTAUT Model (패션 공유 어플리케이션의 사용자 경험이 수용에 미치는 영향 연구: UTAUT 모형을 중심으로)

  • Kim, Gi-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.82-93
    • /
    • 2019
  • Fashion cannot encourage co-consumption with other people as a personal item, but it can lead to new consumer needs if fashion sharing service can professionally replace the time and cost of purchasing and managing goods. The purpose of this study is to empirically investigate the factors influencing the acceptance of fashion-sharing services based on the integration theory of user acceptance and utilization (UTAUT), and to discuss the virtuous cycle and sustainability pursuit of resources through the activation of the sharing. In this study, the research model for the acceptance of fashion sharing applications is schematized, and the survey was conducted 300 women aged 20~49 years. The screens of 'Project Anne', a representative fashion sharing service in Korea, were provided as a visual data. Reliability analysis, correlation analysis, confirmatory factor analysis, structural equation analysis, and multiple group analysis were performed using SPSS 23.0 and AMOS 22.0 statistical package for statistical analysis. As a result, efficiency and social influence positively influenced behavioral intention to use, and age has found that efficiency and social influences modulate the intensity of behavioral intention to use. Therefore, for the consumer acceptance and activation of fashion sharing services, marketing activities emphasizing efficiency and strengthening social influence factors are essential. Also, it is necessary to maintain the existing target group, 30~40s, and also construct additional products and price services for the 20s. This study is of academic significance in presenting basic data for empirical research on consumer acceptance of fashion sharing, and suggests a study on the influence relationship among user experience components for real users in the future.

Explainable Artificial Intelligence Applied in Deep Learning for Review Helpfulness Prediction (XAI 기법을 이용한 리뷰 유용성 예측 결과 설명에 관한 연구)

  • Dongyeop Ryu;Xinzhe Li;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.35-56
    • /
    • 2023
  • With the development of information and communication technology, numerous reviews are continuously posted on websites, which causes information overload problems. Therefore, users face difficulty in exploring reviews for their decision-making. To solve such a problem, many studies on review helpfulness prediction have been actively conducted to provide users with helpful and reliable reviews. Existing studies predict review helpfulness mainly based on the features included in the review. However, such studies disable providing the reason why predicted reviews are helpful. Therefore, this study aims to propose a methodology for applying eXplainable Artificial Intelligence (XAI) techniques in review helpfulness prediction to address such a limitation. This study uses restaurant reviews collected from Yelp.com to compare the prediction performance of six models widely used in previous studies. Next, we propose an explainable review helpfulness prediction model by applying the XAI technique to the model with the best prediction performance. Therefore, the methodology proposed in this study can recommend helpful reviews in the user's purchasing decision-making process and provide the interpretation of why such predicted reviews are helpful.

A Study on Industrial Brand Equity Affecting the Relational Performance between Industrial Buyers and Suppliers (산업재 브랜드 자산의 구성요인들이 관계적 성과에 미치는 영향에 관한 연구)

  • Han, Sang-Lin ;Sung, Hyung-Suk
    • Asia Marketing Journal
    • /
    • v.9 no.1
    • /
    • pp.43-72
    • /
    • 2007
  • The recent development of industrial marketing explains the near absence of research on brand equity in business-to-business markets. With recent change, industrial companies have shifted from a production focus to a customer focus. Industrial brand concept is rapidly developing. The basic purpose of this study is to investigate industrial brand equity affecting the result of business relationship between industrial buyers and suppliers. This research presented a comprehensive constructive model consisting of components of industrial brand equity, and then propose the research model base on prior researches and studies about relationships among components of industrial brand equity. Data were gathered from respondents who work in industrial buying center. For this study, Data were analyzed by SPSS 11.0 and AMOS 5.0. The results of this research analysis were as fallow. Industrial brand loyalty was positively related with perceived value, perceived quality, brand awareness, relationship satisfaction, switching cost, relationship commitment. Also, Industrial corporate performance and purchasing value was positively related with brand loyalty and relationship commitment.

  • PDF

The Effects of Long-Term Relationship Orientation on Green Supply Chain Management and Performance (기업 간 장기적 관계지향성이 그린공급사슬관리와 성과에 미치는 영향)

  • Lee, Seung GI;Kim, Byung-Keun;Park, Young Chan
    • Korean small business review
    • /
    • v.39 no.1
    • /
    • pp.59-87
    • /
    • 2017
  • There is growing concern of the international community for the environmental issues including climate change. Scholars have examined various issues regrading Green Supply Chain Management (GSCM) but they mainly have focused on why firms introduce and implement GSCM from the persecutive of manufacturers. In particular, there has been few studies of green supply chain management in Korea. We investigate the effects of long-term relationships on green supply chain management and the relationship between GSCM and environmental performance. We also examine the relationship between long-term relationships and green information sharing, the effects of green information sharing on the GSCM. The data for this study were collected through a questionnaire survey on firms that participated in the Green Partnership Program of Korea Institute of Industrial Technology. Based on the responses of 155 firms the research model is empirically tested through a structural equation model. We found that long-term relationships facilitate GSCM significantly as it was expected. Green purchase and green product design also appears to improve environmental performance. Long-term relationship appears to affect positively green information sharing. Green information sharing does not have a statistically significant effect on environmental performance but show positive effect on GSCM including green purchase and green product design.

Building an Efficient Supply Chain by reduction of lead time with a Focus on Korea Server Manufacturer (리드타임 감소에 의한 효율적 공급체인 구축 - 국내 서버 공급체인을 대상으로 -)

  • 신용석;김태현;문성암
    • Journal of Distribution Research
    • /
    • v.6 no.2
    • /
    • pp.1-17
    • /
    • 2002
  • The recent dot-com craze has been one of the main causes that accelerated the growth of internet-related companies in diversity as well as in size. Meanwhile, the domestic market of supplies and equipment for internet businesses has been dominated by major foreign companies. To regain their market positions, the domestic manufacturers had to find the way to build up their competitive advantages, such as meeting their customers needs and reducing overall costs. In this study, one domestic PC server manufacturer, which competes fiercely with foreign manufacturers for the top place, has been chosen as a model to evaluate its current supply chain and to find an area that can be improved for a better performance. System Dynamics is used throughout the study. The central concept to system dynamics is understanding how all the objects in a system interact with one another. It focuses on feedback and secondary effects to think through how a strategy might or might not work, depending on how organizational changes are received, and what kinds of consequences emerge. Then, computerized models were built for simulations, each with different conditions, and, finally, the results were evaluated based on some criteria which are considered to be important and meaningful. The inefficiency that exists in the supply chain was proved to be a thirty-day long purchasing order leadtime, and it was expected that more effective supply chain could be formed if the leadtme were reduced to 14 days or 7 days. The results of simulations showed that the overall expected costs in supply chain was the least with the purchasing leadtime being 7 days. The lower average number of parts held as inventory, along with the reduced lost sales, acted as the factor reducing the expected overall costs. Although there was a slight increase in the average number of final products held as inventory and the total ordering cost, the benefits from lower parts inventory and reduced lost sales were large enough to justify the overall cost reduction.

  • PDF

Structural Relationships among Site Quality of Online Wine Store, Perceived Value, and Online Purchase Intention (온라인 와인매장 사이트 품질, 지각된 가치, 온라인 구매의도 간의 구조적 관계)

  • Han, Su-Jin;Kim, Yoo-Jung;Kang, Sora
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6133-6145
    • /
    • 2013
  • With the increasing number of online wine stores, customers are increasingly seeking to purchase wine online. On the other hand, purchasing wine online is prohibited by law or regulation in Korea. Therefore, customers mainly search for wine information, inquire about wine products, and make a pre-purchase at an online wine store. Online wine stores play important roles in customer's purchase decision-making, and are likely to be a useful wine distribution channel in the near future. Therefore, the aim of this study was to identify the determinants of the online wine purchase intention, and examine the structural relationships between the determinants and online wine purchase intention. The site quality of online wine stores (information quality, system quality, service quality), and perceived value (quality value, price value, emotional value, social value) were selected as the determinants of online wine purchase intention based on literature review. The data was collected from those who had experience using an online wine store to purchase wine, and the data was used to test the proposed research model. The findings showed that the information quality was not related to the perceived value (quality value, price value, emotional value, social value). The system quality was proven to be positively and significantly related to the quality value, price value, and emotional value, whereas it had no impact on the social value. In addition, the service quality was found to affect the perceived value (quality value, price value, emotional and social value). Finally, the results showed that the quality value, emotional value, and social value have a positive impact on the online wine purchase intention, whereas the price quality is not related to the online wine purchase intention. These results are expected to make a contribution to a better understanding of how the quality of online wine stores and the customer's perceived value affect the online wine purchasing intention.

Determinants of Mobile Application Use: A Study Focused on the Correlation between Application Categories (모바일 앱 사용에 영향을 미치는 요인에 관한 연구: 앱 카테고리 간 상관관계를 중심으로)

  • Park, Sangkyu;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.157-176
    • /
    • 2016
  • For a long time, mobile phone had a sole function of communication. Recently however, abrupt innovations in technology allowed extension of the sphere in mobile phone activities. Development of technology enabled realization of almost computer-like environment even on a very small device. Such advancement yielded several forms of new high-tech devices such as smartphone and tablet PC, which quickly proliferated. Simultaneously with the diffusion of the mobile devices, mobile applications for those devices also prospered and soon became deeply penetrated in consumers' daily lives. Numerous mobile applications have been released in app stores yielding trillions of cumulative downloads. However, a big majority of the applications are disregarded from consumers. Even after the applications are purchased, they do not survive long in consumers' mobile devices and are soon abandoned. Nevertheless, it is imperative for both app developers and app-store operators to understand consumer behaviors and to develop marketing strategies aiming to make sustainable business by first increasing sales of mobile applications and by also designing surviving strategy for applications. Therefore, this research analyzes consumers' mobile application usage behavior in a frame of substitution/supplementary of application categories and several explanatory variables. Considering that consumers of mobile devices use multiple apps simultaneously, this research adopts multivariate probit models to explain mobile application usage behavior and to derive correlation between categories of applications for observing substitution/supplementary of application use. The research adopts several explanatory variables including sociodemographic data, user experiences of purchased applications that reflect future purchasing behavior of paid applications as well as consumer attitudes toward marketing efforts, variables representing consumer attitudes toward rating of the app and those representing consumer attitudes toward app-store promotion efforts (i.e., top developer badge and editor's choice badge). Results of this study can be explained in hedonic and utilitarian framework. Consumers who use hedonic applications, such as those of game and entertainment-related, are of young age with low education level. However, consumers who are old and have received higher education level prefer utilitarian application category such as life, information etc. There are disputable arguments over whether the users of SNS are hedonic or utilitarian. In our results, consumers who are younger and those with higher education level prefer using SNS category applications, which is in a middle of utilitarian and hedonic results. Also, applications that are directly related to tangible assets, such as banking, stock and mobile shopping, are only negatively related to experience of purchasing of paid app, meaning that consumers who put weights on tangible assets do not prefer buying paid application. Regarding categories, most correlations among categories are significantly positive. This is because someone who spend more time on mobile devices tends to use more applications. Game and entertainment category shows significant and positive correlation; however, there exists significantly negative correlation between game and information, as well as game and e-commerce categories of applications. Meanwhile, categories of game and SNS as well as game and finance have shown no significant correlations. This result clearly shows that mobile application usage behavior is quite clearly distinguishable - that the purpose of using mobile devices are polarized into utilitarian and hedonic purpose. This research proves several arguments that can only be explained by second-hand real data, not by survey data, and offers behavioral explanations of mobile application usage in consumers' perspectives. This research also shows substitution/supplementary patterns of consumer application usage, which then explain consumers' mobile application usage behaviors. However, this research has limitations in some points. Classification of categories itself is disputable, for classification is diverged among several studies. Therefore, there is a possibility of change in results depending on the classification. Lastly, although the data are collected in an individual application level, we reduce its observation into an individual level. Further research will be done to resolve these limitations.

Brand Equity and Purchase Intention in Fashion Products: A Cross-Cultural Study in Asia and Europe (상표자산과 구매의도와의 관계에 관한 국제비교연구 - 아시아와 유럽의 의류시장을 중심으로 -)

  • Kim, Kyung-Hoon;Ko, Eun-Ju;Graham, Hooley;Lee, Nick;Lee, Dong-Hae;Jung, Hong-Seob;Jeon, Byung-Joo;Moon, Hak-Il
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.245-276
    • /
    • 2008
  • Brand equity is one of the most important concepts in business practice as well as in academic research. Successful brands can allow marketers to gain competitive advantage (Lassar et al.,1995), including the opportunity for successful extensions, resilience against competitors' promotional pressures, and the ability to create barriers to competitive entry (Farquhar, 1989). Branding plays a special role in service firms because strong brands increase trust in intangible products (Berry, 2000), enabling customers to better visualize and understand them. They reduce customers' perceived monetary, social, and safety risks in buying services, which are obstacles to evaluating a service correctly before purchase. Also, a high level of brand equity increases consumer satisfaction, repurchasing intent, and degree of loyalty. Brand equity can be considered as a mixture that includes both financial assets and relationships. Actually, brand equity can be viewed as the value added to the product (Keller, 1993), or the perceived value of the product in consumers' minds. Mahajan et al. (1990) claim that customer-based brand equity can be measured by the level of consumers' perceptions. Several researchers discuss brand equity based on two dimensions: consumer perception and consumer behavior. Aaker (1991) suggests measuring brand equity through price premium, loyalty, perceived quality, and brand associations. Viewing brand equity as the consumer's behavior toward a brand, Keller (1993) proposes similar dimensions: brand awareness and brand knowledge. Thus, past studies tend to identify brand equity as a multidimensional construct consisted of brand loyalty, brand awareness, brand knowledge, customer satisfaction, perceived equity, brand associations, and other proprietary assets (Aaker, 1991, 1996; Blackston, 1995; Cobb-Walgren et al., 1995; Na, 1995). Other studies tend to regard brand equity and other brand assets, such as brand knowledge, brand awareness, brand image, brand loyalty, perceived quality, and so on, as independent but related constructs (Keller, 1993; Kirmani and Zeithaml, 1993). Walters(1978) defined information search as, "A psychological or physical action a consumer takes in order to acquire information about a product or store." But, each consumer has different methods for informationsearch. There are two methods of information search, internal and external search. Internal search is, "Search of information already saved in the memory of the individual consumer"(Engel, Blackwell, 1982) which is, "memory of a previous purchase experience or information from a previous search."(Beales, Mazis, Salop, and Staelin, 1981). External search is "A completely voluntary decision made in order to obtain new information"(Engel & Blackwell, 1982) which is, "Actions of a consumer to acquire necessary information by such methods as intentionally exposing oneself to advertisements, taking to friends or family or visiting a store."(Beales, Mazis, Salop, and Staelin, 1981). There are many sources for consumers' information search including advertisement sources such as the internet, radio, television, newspapers and magazines, information supplied by businesses such as sales people, packaging and in-store information, consumer sources such as family, friends and colleagues, and mass media sources such as consumer protection agencies, government agencies and mass media sources. Understanding consumers' purchasing behavior is a key factor of a firm to attract and retain customers and improving the firm's prospects for survival and growth, and enhancing shareholder's value. Therefore, marketers should understand consumer as individual and market segment. One theory of consumer behavior supports the belief that individuals are rational. Individuals think and move through stages when making a purchase decision. This means that rational thinkers have led to the identification of a consumer buying decision process. This decision process with its different levels of involvement and influencing factors has been widely accepted and is fundamental to the understanding purchase intention represent to what consumers think they will buy. Brand equity is not only companies but also very important asset more than product itself. This paper studies brand equity model and influencing factors including information process such as information searching and information resources in the fashion market in Asia and Europe. Information searching and information resources are influencing brand knowledge that influences consumers purchase decision. Nine research hypotheses are drawn to test the relationships among antecedents of brand equity and purchase intention and relationships among brand knowledge, brand value, brand attitude, and brand loyalty. H1. Information searching influences brand knowledge positively. H2. Information sources influence brand knowledge positively. H3. Brand knowledge influences brand attitude. H4. Brand knowledge influences brand value. H5. Brand attitude influences brand loyalty. H6. Brand attitude influences brand value. H7. Brand loyalty influences purchase intention. H8. Brand value influence purchase intention. H9. There will be the same research model in Asia and Europe. We performed structural equation model analysis in order to test hypotheses suggested in this study. The model fitting index of the research model in Asia was $X^2$=195.19(p=0.0), NFI=0.90, NNFI=0.87, CFI=0.90, GFI=0.90, RMR=0.083, AGFI=0.85, which means the model fitting of the model is good enough. In Europe, it was $X^2$=133.25(p=0.0), NFI=0.81, NNFI=0.85, CFI=0.89, GFI=0.90, RMR=0.073, AGFI=0.85, which means the model fitting of the model is good enough. From the test results, hypotheses were accepted. All of these hypotheses except one are supported. In Europe, information search is not an antecedent of brand knowledge. This means that sales of global fashion brands like jeans in Europe are not expanding as rapidly as in Asian markets such as China, Japan, and South Korea. Young consumers in European countries are not more brand and fashion conscious than their counter partners in Asia. The results have theoretical, practical meaning and contributions. In the fashion jeans industry, relatively few studies examining the viability of cross-national brand equity has been studied. This study provides insight on building global brand equity and suggests information process elements like information search and information resources are working differently in Asia and Europe for fashion jean market.

  • PDF

Electronic Word-of-Mouth in B2C Virtual Communities: An Empirical Study from CTrip.com (B2C허의사구중적전자구비(B2C虚拟社区中的电子口碑): 관우휴정려유망적실증연구(关于携程旅游网的实证研究))

  • Li, Guoxin;Elliot, Statia;Choi, Chris
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.262-268
    • /
    • 2010
  • Virtual communities (VCs) have developed rapidly, with more and more people participating in them to exchange information and opinions. A virtual community is a group of people who may or may not meet one another face to face, and who exchange words and ideas through the mediation of computer bulletin boards and networks. A business-to-consumer virtual community (B2CVC) is a commercial group that creates a trustworthy environment intended to motivate consumers to be more willing to buy from an online store. B2CVCs create a social atmosphere through information contribution such as recommendations, reviews, and ratings of buyers and sellers. Although the importance of B2CVCs has been recognized, few studies have been conducted to examine members' word-of-mouth behavior within these communities. This study proposes a model of involvement, statistics, trust, "stickiness," and word-of-mouth in a B2CVC and explores the relationships among these elements based on empirical data. The objectives are threefold: (i) to empirically test a B2CVC model that integrates measures of beliefs, attitudes, and behaviors; (ii) to better understand the nature of these relationships, specifically through word-of-mouth as a measure of revenue generation; and (iii) to better understand the role of stickiness of B2CVC in CRM marketing. The model incorporates three key elements concerning community members: (i) their beliefs, measured in terms of their involvement assessment; (ii) their attitudes, measured in terms of their satisfaction and trust; and, (iii) their behavior, measured in terms of site stickiness and their word-of-mouth. Involvement is considered the motivation for consumers to participate in a virtual community. For B2CVC members, information searching and posting have been proposed as the main purpose for their involvement. Satisfaction has been reviewed as an important indicator of a member's overall community evaluation, and conceptualized by different levels of member interactions with their VC. The formation and expansion of a VC depends on the willingness of members to share information and services. Researchers have found that trust is a core component facilitating the anonymous interaction in VCs and e-commerce, and therefore trust-building in VCs has been a common research topic. It is clear that the success of a B2CVC depends on the stickiness of its members to enhance purchasing potential. Opinions communicated and information exchanged between members may represent a type of written word-of-mouth. Therefore, word-of-mouth is one of the primary factors driving the diffusion of B2CVCs across the Internet. Figure 1 presents the research model and hypotheses. The model was tested through the implementation of an online survey of CTrip Travel VC members. A total of 243 collected questionnaires was reduced to 204 usable questionnaires through an empirical process of data cleaning. The study's hypotheses examined the extent to which involvement, satisfaction, and trust influence B2CVC stickiness and members' word-of-mouth. Structural Equation Modeling tested the hypotheses in the analysis, and the structural model fit indices were within accepted thresholds: ${\chi}^2^$/df was 2.76, NFI was .904, IFI was .931, CFI was .930, and RMSEA was .017. Results indicated that involvement has a significant influence on satisfaction (p<0.001, ${\beta}$=0.809). The proportion of variance in satisfaction explained by members' involvement was over half (adjusted $R^2$=0.654), reflecting a strong association. The effect of involvement on trust was also statistically significant (p<0.001, ${\beta}$=0.751), with 57 percent of the variance in trust explained by involvement (adjusted $R^2$=0.563). When the construct "stickiness" was treated as a dependent variable, the proportion of variance explained by the variables of trust and satisfaction was relatively low (adjusted $R^2$=0.331). Satisfaction did have a significant influence on stickiness, with ${\beta}$=0.514. However, unexpectedly, the influence of trust was not even significant (p=0.231, t=1.197), rejecting that proposed hypothesis. The importance of stickiness in the model was more significant because of its effect on e-WOM with ${\beta}$=0.920 (p<0.001). Here, the measures of Stickiness explain over eighty of the variance in e-WOM (Adjusted $R^2$=0.846). Overall, the results of the study supported the hypothesized relationships between members' involvement in a B2CVC and their satisfaction with and trust of it. However, trust, as a traditional measure in behavioral models, has no significant influence on stickiness in the B2CVC environment. This study contributes to the growing body of literature on B2CVCs, specifically addressing gaps in the academic research by integrating measures of beliefs, attitudes, and behaviors in one model. The results provide additional insights to behavioral factors in a B2CVC environment, helping to sort out relationships between traditional measures and relatively new measures. For practitioners, the identification of factors, such as member involvement, that strongly influence B2CVC member satisfaction can help focus technological resources in key areas. Global e-marketers can develop marketing strategies directly targeting B2CVC members. In the global tourism business, they can target Chinese members of a B2CVC by providing special discounts for active community members or developing early adopter programs to encourage stickiness in the community. Future studies are called for, and more sophisticated modeling, to expand the measurement of B2CVC member behavior and to conduct experiments across industries, communities, and cultures.

Conditional Generative Adversarial Network based Collaborative Filtering Recommendation System (Conditional Generative Adversarial Network(CGAN) 기반 협업 필터링 추천 시스템)

  • Kang, Soyi;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.157-173
    • /
    • 2021
  • With the development of information technology, the amount of available information increases daily. However, having access to so much information makes it difficult for users to easily find the information they seek. Users want a visualized system that reduces information retrieval and learning time, saving them from personally reading and judging all available information. As a result, recommendation systems are an increasingly important technologies that are essential to the business. Collaborative filtering is used in various fields with excellent performance because recommendations are made based on similar user interests and preferences. However, limitations do exist. Sparsity occurs when user-item preference information is insufficient, and is the main limitation of collaborative filtering. The evaluation value of the user item matrix may be distorted by the data depending on the popularity of the product, or there may be new users who have not yet evaluated the value. The lack of historical data to identify consumer preferences is referred to as data sparsity, and various methods have been studied to address these problems. However, most attempts to solve the sparsity problem are not optimal because they can only be applied when additional data such as users' personal information, social networks, or characteristics of items are included. Another problem is that real-world score data are mostly biased to high scores, resulting in severe imbalances. One cause of this imbalance distribution is the purchasing bias, in which only users with high product ratings purchase products, so those with low ratings are less likely to purchase products and thus do not leave negative product reviews. Due to these characteristics, unlike most users' actual preferences, reviews by users who purchase products are more likely to be positive. Therefore, the actual rating data is over-learned in many classes with high incidence due to its biased characteristics, distorting the market. Applying collaborative filtering to these imbalanced data leads to poor recommendation performance due to excessive learning of biased classes. Traditional oversampling techniques to address this problem are likely to cause overfitting because they repeat the same data, which acts as noise in learning, reducing recommendation performance. In addition, pre-processing methods for most existing data imbalance problems are designed and used for binary classes. Binary class imbalance techniques are difficult to apply to multi-class problems because they cannot model multi-class problems, such as objects at cross-class boundaries or objects overlapping multiple classes. To solve this problem, research has been conducted to convert and apply multi-class problems to binary class problems. However, simplification of multi-class problems can cause potential classification errors when combined with the results of classifiers learned from other sub-problems, resulting in loss of important information about relationships beyond the selected items. Therefore, it is necessary to develop more effective methods to address multi-class imbalance problems. We propose a collaborative filtering model using CGAN to generate realistic virtual data to populate the empty user-item matrix. Conditional vector y identify distributions for minority classes and generate data reflecting their characteristics. Collaborative filtering then maximizes the performance of the recommendation system via hyperparameter tuning. This process should improve the accuracy of the model by addressing the sparsity problem of collaborative filtering implementations while mitigating data imbalances arising from real data. Our model has superior recommendation performance over existing oversampling techniques and existing real-world data with data sparsity. SMOTE, Borderline SMOTE, SVM-SMOTE, ADASYN, and GAN were used as comparative models and we demonstrate the highest prediction accuracy on the RMSE and MAE evaluation scales. Through this study, oversampling based on deep learning will be able to further refine the performance of recommendation systems using actual data and be used to build business recommendation systems.