• Title/Summary/Keyword: pump-and-treat

Search Result 56, Processing Time 0.028 seconds

Evaluation of Contaminant Concentrations in Wet and Dry Seasons during Pump-and-Treat Pilot Tests

  • Jeon, Woo-Hyun;Lee, Jin-Yong;Kwon, Hyung-Pyo;Jun, Seong-Chun;Cheon, Jeong-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.18-31
    • /
    • 2013
  • This study was performed to examine use of the pump-and-treat method for remediation of TCE, CF and CT in groundwater contaminated by DNAPL. The Woosan industrial complex is located in Wonju, about 120 km east of Seoul, Korea. Two pumping wells (KDPW7 and KDPW8) and five monitoring wells (KDMW7, KDMW8, KDMW9, KDMW10, and SKW2) were installed for the test. An asphalt laboratory is a main source of the extensive subsurface contamination at this site. To evaluate change in the concentrations of TCE, CF, and CT in groundwater in the study area, three rounds of pump-and-treat pilot tests were performed (6 July to 6 August, 22 August to 6 September, and 19 September to 2 December in 2011). The groundwater levels and the concentrations of TCE, CF, and CT exhibited negative correlations in the wet season but positive correlations in the dry season, which suggests that the TCE concentrations were mainly controlled by dilution through rainfall during the wet season and by residual TCE, CF, and CT in the unsaturated zone during the dry season. These possibilities should be considered in the full-scale remediation plan.

Optimal Remediation Design Considering Effects of Degradation Processes : Pumping strategy with Enhanced Natural Attenuation

  • Park Dong-Kyu;Lee Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.371-374
    • /
    • 2005
  • We accomplished optimization for pump and treat (P&T) designs in consideration of degradation processes such as retardation and biodegradation, which are significant for contaminant fate in hydrogeology. For more desirable remediation, optimal pumping duration and minimum pumping rate constraint problems are studied. After a specific P&T duration, it replaces the P&T with the enhanced natural attenuation (ENA), which induces aerobic biodegradation by maintaining oxygen concentration. The design in this strategy carries out the optimization for the number and locations of oxygen injection wells.

  • PDF

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

A Study on Pump and Treat Design through Evaluation of Radius of Influence (영향반경을 이용한 양수처리법 설계에 대한 연구)

  • Kim, Jeong-Woo;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.1-14
    • /
    • 2014
  • It is necessary to decide the pumping rate and pumping well location together with the capture zone in order to determine an appropriate groundwater remediation strategy to manage the contaminated groundwater. The relationship between the capture zone and the drawdown radius of influence ($ROI_s$) was considered. $ROI_{cs}$ is defined as the distance where the criteria of drawdown is cs meter from pumping well in this paper. A method to decide the required pumping rate for the remediation of contaminated groundwater in order to create appropriate $ROI_{cs}$ is suggested by using the Theis equation (1935) and Cooper-Jacob equation (1946). It was shown in this study that $ROI_{cs}$ is in proportion to the pumping rate and the criteria of drawdown, which decides $ROI_{cs}$, is inversely proportional to Ti value (transmissivity ${\times}$ hydraulic gradient). The pumping rate which creates the required $ROI_{cs}$ could be planned through the relationship between the $ROI_{cs}$ and pumping rates ($ROI_{cs}$-Q curve) of the field sites 1, 2 and 3. If the drawdown is investigated along with Ti value and pumping rate at a specific site where pump and treat remediation is planned, it is expected that the required criteria of drawdown can be evaluated by using the relationship between the cs and Ti (cs-Ti curve).

Efficiency Assessment of Wastewater Treatment Plant and Groundwater Level by Pump and Treat Technology Applied for Petroleum Contaminated Site (유류오염 지하수 정화를 위한 양수처리법 적용시 지하수위 변화 및 수처리장치의 효율평가)

  • Cho, Chang-Hwan;Kim, Joon-Ho;Park, Min-Kyu;Kim, Tae-Hyung;Choi, Yoen-Soo;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.33-38
    • /
    • 2014
  • This study was performed to evaluate the applicability of pump and treat technology as well as to identify the changes of groundwater level by continuous pumping at the petroleum contaminated site. A total of 9 monitoring wells were installed at the site and the contaminant concentrations, TPH, benzene, toluene, ethylbenzene and xylene, of groundwater were measured. With the results of the groundwater monitoring, a total of 9 wells were set up for pumping contaminated groundwater in 3 locations. The waste water treatment facility with a capacity of $10m^3/hr$ was installed in the site and operated for about 1 year. The concentrations of the contaminated groundwater from the 3 pumping wells were exceeded groundwater regulation for benzene and TPH. However, the effluent concentration of benzene and TPH was under the regulation showing the maximum level of 0.011 mg/L and 1.2 mg/L during the operation periods. Groundwater levels were decreased by continuous pumping and those were not recovered during the operation period. Groundwater levels of PW-1,2, PW-3,4,5,6 and PW-7,8,9 were decreased about 5 m, 0.7 m, 2 m, respectively. The hydraulic conductivity (K) of the region of PW-1,2, PW-3,4,5,6 and PW-7,8,9 was estimated to be $6.143{\times}10^{-5}cm/sec$, $2.675{\times}10^{-5}cm/sec$, $1.198{\times}10^{-4}cm/sec$. Groundwater level was seemed to be affected not by hydraulic conductivity but by morphological effect. These results show that the pump and treat technology has high applicability for the restoration of petroleum contaminated groundwater but needs continuous monitoring to prevent rapid groundwater drawdown.

Design and Optimization of Solid Dispersed Osmotic Pump Tablets of Aceclofenac, A Better Approach to Treat Arthritis

  • Edavalath, Sudeesh;Rao, B. Prakash
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.4
    • /
    • pp.217-225
    • /
    • 2011
  • The aim of this work was to prepare porous osmotic pump tablets for controlled delivery of Aceclofenac. Aceclofenac solid dispersion was prepared to improve the solubility by using the drug - carrier (Mannitol) ratio of 1:1. The osmotic pump tablets were prepared using the solid dispersed product of Aceclofenac. The formulation contains potassium chloride as osmotic agent, cellulose acetate as semipermeable membrane, poly ethylene glycol (PEG 4000) as pore former and sodium lauryl sulphate (SLS) as solubility enhancer. The formulations were designed by the general factors such as osmotic agent and pore former. All formulations were evaluated for various physical parameters and, the in vitro release studies were conducted as per USP. The drug release kinetic studies such as zero order, first order, and Higuchi and Korsmeyer peppas were determined and compared. All the formulations gave more controlled release compared to the marketed tablet studied. Numerical optimization techniques were applied to found out the best formulation by considering the parameter of in vitro drug release kinetics and dissolution profile standards. It was concluded that the porous osmotic pump tablets (F7) composed of Aceclofenac solid dispersion/Potassium chloride/Lactose/Sodium lauryl sulphate/Magnesium Stearate (400/40/95/10/5, mg/tab) and coating composition with Cellulose acetate/ PEG 4000 (60/40 %w/w) is the most satisfactory formulation. The porous osmotic pump tablets provide prolonged, controlled, and gastrointestinal environment-independent drug release.

Determination of the Optimal Strategy for Pump-And-Treat Method

  • Ko, Nak-Youl;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.204-207
    • /
    • 2001
  • An optimization process for the design of groundwater remediation is developed by simultaneously considering the well location and the pumping rate. This process uses two independent models: simulation and optimization model. Groundwater flow and contaminant transport are simulated with MODFLOW and MT3D in simulation model. In optimization model, the location and pumping rate of each well are determined and evaluated by the genetic algorithm. In a homogeneous and symmetric domain, the developed model is tested using sequential pairs for pumping rate of each well, and the model gives more improved result than the model using sequential pairs. In application cases, the suggested optimal design shows that the main location of wells is on the centerline of contaminate distribution. The resulting optimal design also shows that the well with maximum pumping rate is replaced with the further one from the contaminant source along flow direction and that the optimal pumping rate declines when more cleanup time is given. But the optimal pumping rate is not linearly proportional to the cleanup time and the minimum total pumping volume does not coincide with the optimal pumping rate.

  • PDF

Inhibitory mechanism of a newly synthesised proton pump inhibitor, YJA20379-8

  • Sang K. Sohn;Man S. Chang;Young K. Chung;Kim, Kyu B.;Tae W. Woo;Kim, Sung K.;Park, Wahn S.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.100-100
    • /
    • 1997
  • To treat peptic ulcer diseases, many potent proton pump inhibitors have been developed for suppressing the gastric acid secretion in clinical patients. However, most of these agents have common irreversible mechanisms against H$\^$+/, K$\^$+/-ATPase which might be the cause of hypergastrinemia and ECL cell hyperplasia. Therefore, the development of new reversible inhibitors is prompted. In this study, we investigated the inhibitory mechanism of a newly synthesized proton pump inhibitor, YJA20379-8 using lyophilized hog gastric microsomes. YJA20379-8 inhibited K$\^$+/-stimulated H$\^$+/K$\^$+/-ATPase activity uncompetitively with respect to K$\^$+/, and in the other hand, showed competitive inhibitory pattern with ATP, respectively. From these data, we suggest that YJA20379-8 may be a proton pump inhibitor with a new inhibitory mechanism.

  • PDF

Successful Use of Bortezomib for Recurrent Progressive Familial Intrahepatic Cholestasis Type II After Liver Transplantation: A Pediatric Case with a 9-Year Follow-Up

  • Yu Gyoung Bak;Ho Jung Choi;Yeong Eun Kim;Seak Hee Oh;Kyung Mo Kim
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.1
    • /
    • pp.71-76
    • /
    • 2024
  • Recurrence of progressive familial intrahepatic cholestasis (PFIC) type II poses challenges during postoperative liver transplant care. Posttransplant patients with PFIC type II risk developing recurrent cholestasis with normal gamma-glutamyl transferase activity, which mimics the original bile salt export pump (BSEP) protein deficiency and is related to a form of immunoglobulin G antibody (anti-BSEP)-mediated rejection. Bortezomib effectively induces apoptosis of actively antibody-producing plasma cells that may have a role in antibodymediated rejection. In this case, we used bortezomib to treat PFIC type II recurrence after liver transplantation in a child.