• 제목/요약/키워드: pump station

검색결과 125건 처리시간 0.023초

다중 흡수정을 갖는 펌프장 모델의 유동균일성 해석 (Numerical Analysis on the Flow Uniformity in a Pump Sump Model with Multi Pump Intake)

  • 최종웅;최영도;임우섭;이영호
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.14-22
    • /
    • 2009
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite basin with no close walls or floors and with no stray currents. Therefore, flow into the pump intake is with no vortices or swirling. However, pump station designers relying on these curves to define the operating conditions for the pump selected sometimes meet the reductions of capacity and efficiency, as well as the increase of vibration and additional noise, which were caused by air-entered flow in the pump station. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump of pump station model. Multi-intake sump model with anti-submerged vortex device basin is designed and the characteristics of submerged vortex is investigated in the flow field by numerical simulation. In this study, a commercial CFD code is used to predict the vortex generation in the pump station accurately. The analysed results by CFD show that the vortex structure and effect of anti-submerged vortex device are different at each pump intake channel.

펌프제어밸브를 사용한 취수펌프장에서의 수격현상 (Waterhammer for the Intake Pumping Station with the Pump Control Valve)

  • 김경엽;오상현
    • 한국유체기계학회 논문집
    • /
    • 제4권4호
    • /
    • pp.16-21
    • /
    • 2001
  • The field tests on the waterhammer were carried out for PalDang intake pumping station of the metropolitan water supply 5th stage project. The pumping station was equipped with the pump control valve as the main surge suppression device and the surge relief valve as auxiliary. However, the pump control valve had not been early controlled in the planned closing mode, and the slamming occurred to the valve which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. It was desirable that the surge relief valve was installed in the pumping station or near the pump exit for the delay of response. After reforming the oil dashpot of the pump control valve, the sliming disappeared and the measured pressure was in fairly good agreement with the results of simulation. In case of three pumps for ${\phi}2,600$ pipeline being simultaneously tripped, the pressure head in the pumping station increased to 95.6 m, and the upsurge caused by the emergency stop of four pumps for ${\phi}2,800$ pipeline was 89.6m. We concluded that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

펌프장내 흡수정 설계 기준 (The Standard of Sump Design in Pump Station)

  • 노형운;오상현;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.589-592
    • /
    • 2005
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Unfortunately in order to design the sump station, the reasonable code or the standards weren't presented yet in Korea. Thus, some researchers had often referred the HI code, JSME code or CEN code to design the sump station. This study aims to prescribe the standard of sump design which were matched well the Korean pump station. Thus, the HI code and TSJ code would be interpreted fully to Korean language, the part of interpreted clauses of the western codes would be selected to compose the standard.

  • PDF

CFD에 의한 펌프장 Sump내 유동해석 (Flow Analysis around within Sump in a Pump Station using by the CFD)

  • 노형운;김재수;서상호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.89-94
    • /
    • 2002
  • n general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Uneven flow distribution can also increase or decrease the power consumption with a change in total developed head. To avoid these sump problems pump station designers are considered intake structure dimensions, such as approaching upstream, baffle size, sump width, width of pump cell and so on. From this background, flow characteristics of intake within sump are investigated numerically to obtain the optimal sump design data. The sump model is designed in accordance with HI code.

  • PDF

직결식 변속펌프의 운전 방안에 대한 연구 (A Study on the Operating Characteristics of Variable Speed Pump for In-Line Booster Pumping Station)

  • 박종문;최성일;노형운;서상호;김상균
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.191-196
    • /
    • 2001
  • In the systems with largely pipe head loss, variable speed pumps are generally used because substantial energy saving can be expected from such systems by controlling pump speed and also they offer simpler maintenance and operational ease even in conditions where abrupt changes In flow rate and head can occur. The invertor or the fluid coupling system are mainly adopted to control the rotating speed. In this paper, operating conditions at Migum pressing pump station(5 stage), where the fluid coupling system was the first installed for KOWACO, are investigated and analysed so that information thus gained can be usefully employed in the efficient operation of variable speed pump in new installations of in-line booster pumping station.

  • PDF

펌프장에서 Sump내 흡입구 주위의 유동해석 (Flow Analyses around Intake within Sump in a Pump Station)

  • 노형운;김재수;서상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.597-600
    • /
    • 2002
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Uneven flow distribution can also increase or decrease the power consumption with a change in total developed head. To avoid these sump problems pump station designers are considered intake structure dimensions, such as approaching upstream, baffle size, sump width, width of pump cell and so on. From this background, flow characteristics of intake within sump are Investigated numerically to obtain the optimal sump design data. The sump model is designed in accordance with HI code.

  • PDF

인버터 적용 펌프모타의 부하운전별 진동해석 (Analysis of Vibration of apply to drive pump with inverter)

  • 황진열;김기원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1131-1132
    • /
    • 2011
  • For the purpose to flow control of pump in booster pump station, nonlinear-load inverter equipment is being introduced. While inverter equipment has the advantage of power-ratio savings and volume control, due to the vibration of pump and motor, secondary breakdown may occur Purpose in this paper is reliable facility operation by providing optimal operationg standards through vibration analysis of apply to drive pump with inverter in long-term in booster pump station.

  • PDF

직결식 펌프의 수격현상 (Waterhammer For In-line Booster Pump)

  • 김상균;이계복;김경엽
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.208-216
    • /
    • 2004
  • The waterhammer occured when the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests of the waterhammer were carried out for PanGyo booster pumping station. The PanGyo pumuing station was installed booster pump of 6 sets and in-line pump of 2 sets. The main surge suppression device was equipped with the pump control valve and the surge relief valve as auxiliary. However, the pump control valve had not early controlled in the planned closing mode, and the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. After the addition surge suppression device was equipped with air chamber. Further more in-line pump is needed surge suppression device that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

팔당 취수펌프장의 수격현상에 관한 수치해석적 연구 (Numerical Study on the Waterhammer of PalDang Intake Pumping Station)

  • 김경엽;유택인
    • 한국유체기계학회 논문집
    • /
    • 제3권4호
    • /
    • pp.52-58
    • /
    • 2000
  • The numerical study on the waterhammer was carried out for the intake pumping station of the metropolitan water supply 6th stage project. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully investigated. The surge tank and the stand pipes effectively protected the tunnels md the downstream region of pipeline from the pressure surge. In case the moment of inertia of the pump and motor was above $5080\;kg{\cdot}m^2$, the column separation did not occur in the pipeline between the pumping station and the inlet of 1st tunnel. As the moment of inertia increased, the pressure surges decreased in the pipeline conveying raw water. The pump control valve was chosen as the main surge suppression device for the intake pumping station. After power failure, the valve disc should be rapidly closed in 2.5 seconds and controlled the final closure to 15 seconds by the oil dashpot. If the slamming happened to the pump control valve, there was some danger of this system damaging. As the reverse flow through the valve increased, the upsurge extremely increased.

  • PDF

가압펌프장의 수격완화설비에 대한 보수·보강 사례 (Case Study of Repair Works on Surge Suppression Device for Booster Pumping Station)

  • 김상균;이동근;이계복;김경엽
    • 한국유체기계학회 논문집
    • /
    • 제8권4호
    • /
    • pp.20-26
    • /
    • 2005
  • When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests on the waterhammer were carried out for Pangyo booster pumping station in which had six booster pumps and two in-line pumps with the motor of output 1,700 kW, respectively. The booster pumping station was equipped with the pump control valve as the main surge suppression device, and the surge relief valve as auxiliary one. But the pump control valve had not early controlled in the planned closing mode, the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the positive pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the pump control valve was damaged. After the air chambers were additionally installed in the booster pumping station, it was preyed that the water supply system acquire the safety and reliability on the pressure surge.