• Title/Summary/Keyword: pump pressure

Search Result 1,493, Processing Time 0.028 seconds

Studies on Characteristics of Pressure Regulation System for Simulating Turbo Pump Unit (터보펌프 모사를 위한 압력조절계의 특성에 관한 연구)

  • Lee Joong-Youp;Jung Tae-Kyu;Chung Yong-Gahp;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • This paper has been conducted to design for pressure regulation system. to simulate for performance of turbo pump unit using AMESim(Advanced Modeling Environment for Simulation of Engineering Systems). With optimized of system, pressure regulation system has been confirmed dynamic characteristics of transient and steady states range based on static modeling of open type turbo pump fed engine system. These results can be utilized to verify for performance test facility of propulsion control system for analysis on control valves, review of the fundamental principle on the control logic and certificating engine feeding system.

Pressure Control Drive of SRM for Hydraulic Pump with Pressure Predict Method and Direct Torque Control Method (압력예측기법과 직접순시토크제어기법을 통한 유압펌프용 SRM의 압력제어구동)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.163-165
    • /
    • 2007
  • Direct Instantaneous Pressure Control(DIPC) method of SRM using pressure predict method is presented in this paper. A hydraulic pump system has an inherent defect that its dynamic behavior causes by interaction between the sensor and hydraulic load. It will make sometimes the whole system become oscillatory and unstable. Proposed system integrates direct instantaneous torque control (DITC) and Smith predictor to improve dynamic performance and stabilization. The proposed hydraulic oil pump system is verified by computer simulation and experimental results.

  • PDF

Flow/Pressure/Power Control of Hydraulic Pump Utilizing Switching Control Mode (스위칭 제어 모드를 이용한 유압펌프의 유량/압력/동력 제어)

  • Jung, D.S.;Kim, H.E.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.8-14
    • /
    • 2007
  • The electro-hydraulic pump is usually used in testing equipments which require one control function. But until now, it is not applied to industrial equipments which are exposed to severe working environment and require various control functions. This paper proposes a technique which controls continuously flow, pressure and power by utilizing switching control mode. Mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

  • PDF

A Study on Pump Down Operation Performance of Refrigerator (냉동기 펌프다운 운전성능에 관한 연구)

  • Kim, Chul-Soo;Chung, Han-Shik;Jeong, Hyo-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.964-970
    • /
    • 2006
  • Vapor compression refrigerators have much critical variables such as the controls of temperature and pressure switches, control durations and operating hours of electronic valves. This study compares and analyzes the data which is obtained from system controlling of the evaporation temperatures which are generally used in automatic pump down operating systems. Through this study, the automatic evaporation control operation system will be more ideal for the system to keep the proper temperature distribution depending on the purpose of evaporation side. The automatic pump down control operation is more appropriate for the system to aim at the effective use of evaporation side without using the temperature difference. And this test will be proved that the changes at the low pressure side didn't have significant impacts on the high pressure side.

Dynamic Response Characteristics Evaluation of Hydrostatic Bearing in Hydraulic Piston Pump/Motor (유압 피스톤 펌프/모터의 정압베어링 응답특성 평가)

  • Ham, Young-Bog;Yun, So-Nam;Kim, Dong-Soo;Choi, Byoung-Oh;Kim, Sung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.116-120
    • /
    • 2001
  • In swash plate type axial piston hydraulic pump and motor, the piston shoe is periodically pressurized with square function shape by supply pressure load as rotation of cylinder barrel. Therefore the recess pressure on bottom part of piston shoe is suddenly increase through orifice in the piston shoe. In this study, we simulated that the frequency response of the recess pressure against with change of supply pressure with analysis tool. Also, we evaluate the dynamic response characteristics of overbalanced hydrostatic bearing with change of the orifice diameter.

  • PDF

Sensorless Starting Method and Fuel Pressure Control of BLDC Motor for Fuel Pump of Vehicle (자동차 연료 펌프용 BLDC 모터의 센서리스 기동 및 연료 압력 제어)

  • Chang, Jin-Wook;Yoon, Duck-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.114-121
    • /
    • 2013
  • High efficiency operation is required for motors of vehicle to increase fuel efficiency due to the regulation of exhaust gas. This paper presents a control method of fuel pressure to increase fuel efficiency and a sensorless control method of BLDC motor to get higher efficiency than conventional brushed DC motor. Initial rotor position of BLDC motor is detected from current value that is occurred by test voltage pulse and rotor is accelerated by defined sequence to enter sensorless operation mode. The algorithm to control flow rate of fuel pump uses PI controller that is control motor speed to maintain the target fuel pressure commanded by ECU.

Evaluation of Thermodynamic Method for Pump Performance Measurement (열역학적 방법을 이용한 펌프 운전성능 평가법 검토)

  • Kang, Shin-Hyoung;Kim, Jin-Kwon;Hong, Soon-Sam;Yates, Alex
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.25-30
    • /
    • 2000
  • Thermodynamic method of pump performance measurement calculates pump efficiency and flowrate by measuring fluid temperature increase and pressure rise through the pump. The theory of this method is investigated and precise comparison experiment with classical hydraulic method was conducted to verify the accuracy. Classical hydraulic pump performance measurement results and Yatesmeter results based on the thermodynamic method showed good agreement in measured performance.

  • PDF

Hexagonal reciprocating pump: advantages and weaknesses

  • Stanko, Milan;Golan, Michael
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.121-136
    • /
    • 2013
  • This paper reports the 1-D fluid transient simulation results of the discharge flow conditions in a 6-cylinder reciprocating slurry pump. Two discharge manifold configurations are studied comparatively; a case with a hexagon shaped discharge manifold where each cylinder discharges at a single vertex, and a case where all the cylinders discharges are lumped together into a tank shaped manifold. In addition, the study examines the effect of two pulsation mitigation measures in the case of hexagonal manifold; a single inline orifice in one of the hexagon sides and a volumetric dampener at the manifold outlet. The study establishes the pressure and flow fluctuation characteristics of each configuration and decouples the pulsation characteristics of the pump and the discharge manifold.

The Study on Development of Performance in Cryogenic Piston Pump (초저온 피스톤 펌프의 성능 향상에 관한 연구)

  • Lee, Jongmin;Lee, Jonggoo;Lee, Kwangju;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.240-246
    • /
    • 2014
  • In order to develop a universal cryogenic piston pump of small size for increasing utilization of liquid hydrogen, dynamic compression performance of piston pump were evaluated and improvements were also discussed for piston rod and piston tip. The cryogenic piston pump has crosshead structure and inclined cup shape piston tip. As the results, it was found that i) insulation of heat flow from piston-rod part is required for stable operation ii) improving the self-clearance adjustment effect of piston tip and reducing piston eccentricity were desirable to promote pumping pressure and operating range.

Study on the performance analysis and the optimization of regenerative pump (재생펌프의 성능해석 및 최적화에 관한 연구)

  • Lee, Chan;Sung, Hyung-Jin;Kwon, Jang-Hyuk;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.661-667
    • /
    • 1991
  • A performance of a regenerative pump has been analyzed using various pressure loss correlations. The predicted head and efficiency agree favorably with experimental data, which confirms the validity of the present analysis. In addition, performance improvement is made through the optimization of the open channel geometry configuration and the capacity of the regenerative pump. The optimized pump has better efficiency, higher head and larger flow coefficient. Moreover, its operation range is wider than that of the conventional unit.