• Title/Summary/Keyword: pump LD

Search Result 16, Processing Time 0.029 seconds

Analysis of Laser Weldment Distortion in the EDFA LD Pump Packaging (광신호 증폭기 EDFA LD 펌프 패키징 레이저 용접부 변형 해석)

  • Gang, Dae-Hyeon;Son, Gwang-Jae;Yang, Yeong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.139-146
    • /
    • 2001
  • This paper presents a study on heat transfer and residual distortion analysis of laser welded EDFA(Erbium Doped Fiber Amplifier) LD(Laser Diode) Pump using the finite element method. In the production process of LD Pump in light-wave communication system, ferrule and saddle are welded by Nd-YAG laser. These parts experience thermal and mechanical effect during heating and cooling cycle with the laser welding. Thus distortion happens in the laser-welded packaging, and it makes an error in detecting the light signal translate through optical fiber in LD Pump. The amount of final displacement produced by the laser welding is predicted using the finite element method. And the optimal shape of saddle is proposed with the results of numerical analyses to minimize the displacement.

  • PDF

Analysis of Laser Weldment Distortion in the EDFA LD Pump Packaging (광신호 증폭기 EDFA LD 펌프 패키징 레이저 용접부 변형 해석)

  • 손광재;양영수
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.166-169
    • /
    • 2000
  • This paper presents a study on the LD Pump laser welded heat transfer and distortion analysis by using finite element method. In the production processing, ferrule and saddle of LD Pump in light-wave communication system are welded by multi mode Nd-YAG laser. Thus distortion happens during laser-welded packaging, and it makes an error of detecting the light signal translated through optical fiber in LD Pump. These parts experience thermal and mechanical hysteresis during heating and cooling process come from laser welding. The amount of final displacement is predicted using the finite element method. And the optimal shape is decided by using the result of pre-analysis.

  • PDF

CW Operation of LD-pumped Nd -YLF Laser- (레이저 다이오드로 펌핑되는 Nd:YLF 레이저의 발진 특성)

  • 강응철
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.289-293
    • /
    • 1993
  • A Nd:YLF laser pumped by a CW GaAlAs laser diode(LD) at 792 nm has been designed and fabricated. The output power was investigated as a function of LD spectrum and pump power. A folded laser resonator was desinged to compensate for the astigmatism produced at the Brewster surface of Nd:YLF rod. We obtained output power of CW 1.1 Watt when the pumping power was 2.8 Watt and the output wavelength of LD was temperature tuned to the peak absorption line of Nd:YLF. The overall efficiency was 39 % and slope efficiency was 41 %.

  • PDF

Compact green light sources for laser projection display

  • Ko, Do-Kyeong;Jung, Chang-Soo;Yu, Nan-Ei;Yu, Bong-Ahn;Lee, Yeung-Lak;Lee, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1335-1336
    • /
    • 2008
  • A compact diode-pumped microchip(DPM) green light source which consist of pump LD, $Nd:YVO_4$, KTP and a built-in thermoelectric element has been fabricated for laser projection display. The volume of the source is as small as $0.7\;cm^3$ and we obtained the output power of 25mW with the average electric power consumption in pump LD of 304mW which correspond to the electrical-to-optical efficiency of 7.8%. Another approach using quasi phase matching(QPM) technique has been attempted. We obtained the output power of 90mW of green beam with 350mW pumping of a $Nd:YVO_4$ laser with 20-kHz rep. rate and 10-ns pulse duration. Detailed characteristics and issues of the DPM and QPM green light sources will be addressed.

  • PDF

Comparison of Heat Transfer Theory, CFD and Experimental Results in the Design Process of High-Power Fiber Laser Cooling Plate (고출력 광섬유 레이저 냉각판 설계과정에서 나타난 열전달 이론, CFD 및 실험 결과값의 비교)

  • Kim, Taewoo;Lee, Kangin;Jeong, Minwan;Jeong, Yeji;Koh, KwangUoong;Lee, Yongsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.629-637
    • /
    • 2021
  • For the stabilization of laser output power and wavelength of the high power fiber laser, the cooling plate must be properly taken into account. In this study, three analyzing methods which are heat transfer theory, CFD and experiment are used to analyze cooling plate performance by measuring pump Laser Diode(LD) temperature. Under limited operating conditions of a cooling plate, the internal flow of cooling plate is transitional flow so that the internal flow is assumed to be laminar and turbulence flow and conducted theoretical calculation. Through CFD, temperature of pump LD and characteristics of the internal flow were analyzed. By the experiment, temperature of pump LD was measured in real conditions and the performance of the cooling plate was verified. The results of this study indicate that three analyzing methods are practically useful to design the cooling plate for the high power fiber laser or similar things.

Operational and Thermal Characteristics of a Microchip Yb:YAG Laser (마이크로 칩 Yb:YAG 레이저의 동작 및 열적 특성)

  • Moon, Hee-Jong;Hong, Sung-Ki;Lim, Chang-Hwan
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.96-101
    • /
    • 2011
  • Operational and thermal characteristics of a thin disk Yb:YAG crystal with a thickness of 0.8 mm were studied using as a pumping source a fiber-coupled 930 nm laser diode. The heat generated in the crystal was dissipated by placing both surfaces in contact with copper plates with central hole, and the dependence of the temperature change in the illuminated spot on hole size was investigated by measuring the spectral change of the lasing peaks. The slope efficiency and optical-to-optical efficiency with respect to the LD pump power were as high as 42.2% and 34.8%, respectively. The temperature at the illuminated spot increased with diode current and with increasing hole size of the copper plate. When the hole size considerably exceeded the crystal thickness, the temperature rise deviated from the linear increase at high pump power.

Characterization of Erbium-Doped Fiber Amplifier (에르븀 첨가 광섬유증폭기의 특성측정)

  • 한정희;이재승;주무정;심창섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.5
    • /
    • pp.45-51
    • /
    • 1993
  • An erbium doped fiber amplifier(EDFA) pumped by aingle 1.48$\mu$m LD was fabricated, and its gain and noise characteristics were measured. As a signal source, 1548 nm wavelength DFB LD was used. The small signal net gain of the EDFA module was 21.8 dB with maximum gain coefficient 0.7dB/mW for the erbium fiber length of 17.6 m, the pump power of 58 mW, and an input signal power of -25 dBm, respectively. The saturation power of the EDFA was 1 dBm for the input signal power of -5 dBm and the noise figure, measured by using an optical spectrum analyzer, was 5.8 dB for the input signal power of -40 dBm.

  • PDF

ion-Exchanged Waveguide Amplifier in Er/Yb-Doped Phosphate Glass (Er과 Yb가 동시 첨가된 인산염계 유리를 이용한 이온 교환 도파로 광증폭기)

  • 차상준;김원효;문종하
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.172-173
    • /
    • 2002
  • An erbium-ytterbium co-doped phosphate glass waveguide amplifier, fabricated by two-step ion-exchange, is presented. The performance of the amplifiers are investigated in viewpoints of net gain, pump power, and noise figure. The waveguide has propagation loss of 0.7 dB/cm Including insertion loss at 1.304 $\mu\textrm{m}$. At a signal wavelength of 1.534 $\mu\textrm{m}$, a high net gain of 12.8 dB and low noise figure of less than 3.9 dB are archived in a 4 cm long waveguide when injected by 140 ㎽ of LD pump at 0.98$\mu\textrm{m}$ in single pass configuration.

  • PDF

High Power Switchable Dual-Wavelength Linear Polarized Yb-Dozped Fiber Laser around 1120 nm

  • Liu, Xiaojuan;Huang, Bangcai;Wei, Gongxiang;Han, Kezhen;Huang, Yan;Liu, Fangfang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.716-721
    • /
    • 2016
  • A single-and dual-wavelength switchable polarized Yb-doped double-clad fiber laser around 1120 nm based on a pair of fiber Bragg gratings (FBGs) is demonstrated. The polarization-maintaining (PM) linear cavity is composed of a double clad PM Yb-doped fiber (YDF) and a pair of PM FBGs. The laser can operate in stable dual-wavelength or wavelength-switching modes due to the polarization hole burning (PHB) and the spatial hole burning (SHB) enhanced by the PM linear cavity. In dual-wavelength operation, the two orthogonally polarized wavelengths are centered at 1118.912 nm and 1119.152 nm, with an interval of 0.24 nm and a signal to noise ratio (SNR) of 35 dB. The maximum output power is 14.67 W when the launched LD pump is 24 W corresponding to an optical efficiency of 61.1%. The lasing lines switchover may be realized by adjusting the polarization controller (PC) fitted in the cavity. The two single-wavelengths are 1118.912 nm and 1119.152 nm. When the injected LD pump is 24 W, the highest output powers are 7.68 W and 8.64 W corresponding to optical efficiencies of 32% and 36% respectively. The spectral linewidth of the lasing lines are 0.075 nm and 0.07 nm, and the average numerical values of PER aredB and 19.9 dB, respectively.