• Title/Summary/Keyword: pulse-wave sensor

Search Result 107, Processing Time 0.028 seconds

An Implementation of Wireless Monitoring System for Health Care (헬스 케어를 위한 무선 모니터링 시스템 구현)

  • Eom, Sang-Hee;Nam, Jae-Hyun;Chang, Yong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.67-71
    • /
    • 2007
  • Recently, a health care need according to the increase of an advanced age population is increasing. The requirement about a health care monitoring is increasing rapidly from general people as well as patient. The requisition about a medical treatment technique and a medical treatment information service is the trend to be expanding. That can be possible minimizing the inconvenience of the patient to take a medical service and continuously monitoring the status of the patient to take a health care service. This paper discusses an implementation of wireless physiological signal monitoring system for health care. The system are composed of the sensor node and monitoring program. The sensor node has the physiological signal measurement part and the wireless communication part. The remote monitoring system has a monitoring program that are communicating the sensor node using bluetooth. The sensor node measured the ECG, pulse wave, blood pressure, Sp02, and heart rate.

  • PDF

An Implementation of Wireless Monitoring System for Health Care (헬스 케어를 위한 무선 모니터링 시스템 구현)

  • Eom, Sang-Hee;Chang, Yong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1401-1407
    • /
    • 2008
  • Recently, a health care need according to the increase of an advanced age population is increasing. The requirement about a health care monitoring is increasing rapidly from general people as well as patient. The requisition about a medical treatment technique and a medical treatment information service is the trend to be expanding. That can be possible minimizing the inconvenience of the patient to take a medical service and continuously monitoring the status of the patient to take a health care service. This paper discusses an implementation of wireless physiological signal monitoring system for health care. The system are composed of the sensor node and monitoring program. The sensor node has the physiological signal measurement part and the wireless communication part. The remote monitoring system has a monitoring program that are communicating the sensor node using bluetooth. The sensor node measured the ECG, pulse wave, blood pressure, SpO2, and heart rate.

Ultra low-power active wireless sensor for structural health monitoring

  • Zhou, Dao;Ha, Dong Sam;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.675-687
    • /
    • 2010
  • Structural Health Monitoring (SHM) is the science and technology of monitoring and assessing the condition of aerospace, civil and mechanical infrastructures using a sensing system integrated into the structure. Impedance-based SHM measures impedance of a structure using a PZT (Lead Zirconate Titanate) patch. This paper presents a low-power wireless autonomous and active SHM node called Autonomous SHM Sensor 2 (ASN-2), which is based on the impedance method. In this study, we incorporated three methods to save power. First, entire data processing is performed on-board, which minimizes radio transmission time. Considering that the radio of a wireless sensor node consumes the highest power among all modules, reduction of the transmission time saves substantial power. Second, a rectangular pulse train is used to excite a PZT patch instead of a sinusoidal wave. This eliminates a digital-to-analog converter and reduces the memory space. Third, ASN-2 senses the phase of the response signal instead of the magnitude. Sensing the phase of the signal eliminates an analog-to-digital converter and Fast Fourier Transform operation, which not only saves power, but also enables us to use a low-end low-power processor. Our SHM sensor node ASN-2 is implemented using a TI MSP430 microcontroller evaluation board. A cluster of ASN-2 nodes forms a wireless network. Each node wakes up at a predetermined interval, such as once in four hours, performs an SHM operation, reports the result to the central node wirelessly, and returns to sleep. The power consumption of our ASN-2 is 0.15 mW during the inactive mode and 18 mW during the active mode. Each SHM operation takes about 13 seconds to consume 236 mJ. When our ASN-2 operates once in every four hours, it is estimated to run for about 2.5 years with two AAA-size batteries ignoring the internal battery leakage.

Development of a Ring-type Wearable Healthcare Device (반지 형태의 웨어러블 헬스케어 디바이스 개발)

  • Baek, Hyun Jae;Cho, Jaegeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.892-897
    • /
    • 2018
  • Due to population aging, an increase in the number of patients with chronic illnesses, and an increase in the number of single-person households, monitoring of health status in everyday life without the need for a hospital has become very important. For this reason, researches on various health care devices have been attempted, among which wearable devices are attracting much attention. In this paper, we propose a new ring-type wearable device for next generation healthcare. On the inner side of the ring, a metal electrodes for GSR measurement and an optical sensor for measurement of pulse wave signals of two wavelengths of red and near-infrared light were mounted. In addition, it was equipped with an acceleration sensor, and information about the degree of motion could be obtained. In this paper, it is shown that a health monitoring device can be implemented in the form of a ring, and the measured signals can be used to calculate heart rate, oxygen saturation, sleep time and sleep efficiency. Through the advanced algorithm, it is expected that we can extract various health information, especially sleep related health information by using the ring device, and it is also expected that it can contribute to the implementation of wearable healthcare effectively.

Development of Blood Pressure Estimation Methods Using The PPG and ECG Sensors (PPG 및 ECG 센서를 이용한 혈압추정 기법 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Hwang, Tae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1257-1264
    • /
    • 2019
  • The traditional cuff-based method for BP(Blood Pressure) measurement is not suitable for continuous real-time BP measurement techniques. For this reason, the previous studies estimated various blood pressures by fusion with the electrocardiography (ECG) and photoplethysmogram (PPG) sensor signals. However, conventional techniques based on PPG bio-sensing measurement face many challenging issues such as noisy supply fluctuation, small pulsation, and drifting non-pulsatile. This paper proposed a novel BP estimation methods using PPG and ECG sensors, which can be derived from the relationship between PPG and ECG using PTT(Pulse Transit Time) and PWV(Pulse Wave Velocity). Unlike conventional height ratio features, which are extracted on the basis of the peaks in the PPG and ECG waveform. The proposed method can be reliably obtained even if there are missing peaks among the sensed PPG signal. The increased reliability comes from periodical estimation of the peak-to-peak interval time using ECG and PPG. After 250,000 times trials of the blood pressure measurement, the proposed estimation technique was verified with the accuracy of ±28.5% error, compared to a commercialized BP device.

An implementation of the continuous wave doppler system for blood flow measurement using the ultrasound (효율적인 혈류 속도 측정을 위한 연속 초음파 도플러 장치의 구현)

  • 박형재;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.516-519
    • /
    • 2001
  • To diagnose a patient's blood vessel disease, apoplexy, hypertension, arteriosclerosis, the blood velocity is very important. Determining the blood velocity methods using ultrasound are Continuous Doppler System and Pulse Doppler System. In using the Pulse Doppler System, we can obtain the position of blood velocity. But it is more complex hardware than Continuous Doppler System and it has low SNR(signal-noise ratio). So in this study, to obtain a believable information we use the Continuous Pulse Doppler System. Thus system have analog part and digital part. In analog part is composed of ultrasound generating part, the amplifying part to amplify the received signal from ultrasound sensor, the demodulation part to detect blood velocity and the filtering part to remove the noise. In digital part is composed of the A/D conversion part, digital signal processing part, and the communication part to communicate the PC. In this study to implement efficient ultrasound blood velocity measurement system, we can get the patient's blood velocity information in realtime. Thus, It is a useful in the accurate diagnosis with C.T(computered tomography), M.R.I(magnetic resonance imaging).

  • PDF

Evaluation of PPG signals regarding to video attributes of smart-phone camera (스마트폰 카메라의 영상 속성에 따른 맥파 신호 평가)

  • Lee, Haena;Kim, Minhee;Whang, MinCheol;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.917-924
    • /
    • 2015
  • In this study, we study that the video attributes captured by built-in camera in smart-phone can effect on the quality of PPG signal. The conditions of video attributes were composed of the bitrate, the resolution, the flash. As each condition, we measured a change in the red value of the video image and calculated a PPI(Pulse to Pulse Interval) for extracting the pulse wave signal. 20 subjects participated in the experiment and this experiment was carried out 18 tasks. The PPG signal was measured simultaneously for two minutes with the PPG sensor in the middle finger and Smart-phone in the forefinger of the right hand. By proceeding the correlation analysis, we obtained the highest correlation condition(83%, p=0.01), which the resolution was $640{\times}480$, bitrate was 5000kbps, flash was on. As a result, this study will be a useful guide for quality of signals in the pulse signal measurement system using built-in camera in smart-phone.

Estimation of the Central Aortic Pulse using Transfer Function and Improvement of an Augmentation Point Detection Algorithm (전달함수를 이용한 대동맥 맥파 추정 및 증강점 검출 알고리즘 개선에 관한 연구)

  • Im, Jae-Joong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.68-79
    • /
    • 2008
  • Aortic AIx(augmentation index) has been used to measure aortic stiffness quantitatively and even to evaluate ventricular load. However, in order to calculate aortic AIx catheters should be inserted to the subjects' artery, which hampers its clinical usage. To overcome such limitation, aortic AIx has been indirectly calculated by estimating aortic pressure wave from the peripheral arterial pulse by applying transfer functions. In this study, central aortic pressure waves using Millar catheter and radial artery pulse waves using tonometry pressure sensor were measured to establish transfer functions for an estimation of central aortic pressure waves from radial artery pulse waves. Also, an algorithm which detects augmentation point for the calculation of AIx were developed. Developed algorithm for the detection of augmentation point gradually increases the differential order to detect inflection point rather than detects the distinctive point that appears after a specific time. Transfer functions were established using 10th order ARX model and were verified for the stability of the transfer function through residual analysis. Evaluation of an algorithm for the detection of augmentation point were performed by comparing the augmentation points obtained from developed algorithm with the known augmentation points synthesized in various conditions. In addition, developed algorithm for the AIx is proved to provide more accurate results than the ones developed by previous studies. The significance of the study was in two folds. Firstly, the results could provide the basis for the measurement of aortic stiffness using easily-measurable radial artery pulse waves, and secondly, extension of the study may enable the early diagnosis of various vascular diseases.

Compare correlation differnces in blood in blood flow velocity parameters and blood flow velocity the radial artery and a piece of paper as a maker (요골동맥과 첨지를 이용하여 혈류속도 파라미터와 혈류속도 사이의 상관관계 비교)

  • Heo, Sun-Oh;Jeong, Jin-Hyeong;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.187-193
    • /
    • 2015
  • In this study, regressive models were employed to predict the blood velocity by using independent variables which measured by 3 sensors, such as electrocardiogram (ECG), photo-plethysmogram (PPG), pulse diagnosis sensor, without ultrasound device at high cost. In experiment, the high predictable model was induced to estimate the blood velocity correctly by comparing correlation values and significance probabilities between independent variables and blood velocities. Results showed that the model induced by two or three independent variables had a higher predictability than those by a single independent variable.

Voltammetric Studies of Anion Transfer Reactions Across a Microhole Array-Water/PVC-NPOE Gel Interface

  • Hossain, Md. Mokarrom;Girault, Hubert H.;Lee, Hye-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1734-1740
    • /
    • 2012
  • Voltammetric characterization of hydrophilic anion transfer processes across a 66 microhole array interface between the water and polyvinylchloride-2-nitrophenyloctylether gel layer is demonstrated. Since the transfer of hydrophilic anions including $Br^-$, $NO_3{^-}$, $I^-$, $SCN^-$ and $ClO_4{^-}$ across the liquid/gel interface usually sets the potential window within a negative potential region, a highly hydrophobic organic electrolyte, tetraoctylammonium tetrakis(pentafluorophenyl)borate, providing a wider potential window was incorporated into the gel phase. The transfer reaction of perchlorate anions across the microhole-water/gel interface was first studied using cyclic voltammetry and differential pulse voltammetry. The full voltammetric response of perchlorate anion transfer was then used as a reference for evaluating the half-wave transfer potentials, the formal transfer potentials and the formal Gibbs transfer energies of more hydrophilic anions such as $Br^-$, $NO_3{^-}$, $I^-$, and $SCN^-$. The current response associated with the perchlorate anion transfer across the micro-water/gel interface versus the perchlorate concentration was also demonstrated for sensing applications.