• Title/Summary/Keyword: pulse waveforms

Search Result 165, Processing Time 0.029 seconds

Properties of Pulse Waveforms by Posture Changes : Standing, Sitting, Supine Posture (측정 자세의 변화에 따른 맥의 변화 특성 : 선 자세, 앉은 자세, 누운 자세)

  • Kown, Sun-Min;Kang, Hee-Jung;Lee, Sang-Hun;Yim, Yun-Kyoung;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.26 no.4
    • /
    • pp.13-22
    • /
    • 2009
  • Objectives : Informations on pulse diagnosis in literature are based on diagnosing pulse waveforms on supine posture. However, today's pulse waveforms are measured on various postures for the convenience of patients or doctors. For objective measurement, the effect of posture on the pulse waveforms should be considered. The objective of this study was to find posture-related changes in the radial pulse waveforms. Methods : We used an instrument, DMP-3000(DAEYOMEDI Co., Ansan, Korea), measuring radial pulse waveforms noninvasively by tonometric method. 25 male subjects participated in the trial. Before measuring radial pulse waveforms subjects had rest for 5 min. The pulse waveforms were measured on the left wrist. Each subject underwent this course on the supine, sitting, and standing posture. We analyzed pulse waveforms with Height-parameters, Time-parameters, Energy, and Elastic rate. Results : Height-parameters(h1~h5) on the supine posture were bigger than those on the sitting and standing posture. In case of Time-parameters, the parameters making up systolic time decrease in order of on standing, sitting, and supine position. However, systolic time and diastolic time didn't have any changes. Energy of pulse was the biggest on supine posture and Elastic rate on standing posture. Conclusions : In this study we found that posture changes affect radial pulse waveforms. For quantification of the changes, more trials should be done. After analyzing much data we might apply parameters of pulse waveforms changed by posture. Also, we might diagnose special disease with properties of pulse waveforms by posture.

  • PDF

Reciprocal Sustain and Auxiliary Pulse Waveforms Applied to an AC PDP with an Auxiliary Electrode

  • Choi, Kyung-Cheol;Lee, Sung-Min;Choi, Chung-Sock;Jang, Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1543-1546
    • /
    • 2008
  • Modified pulse waveforms were applied to an AC plasma display panel with an auxiliary electrode in order to improve the operation voltage margin. Reciprocal sustain pulse waveforms and modified auxiliary pulse waveforms were applied to the sustain and auxiliary electrode, respectively. During the sustain period, the influence of the address electrode on the luminous efficacy of long-coplanar gap discharges was mitigated by application of reciprocal sustain pulse waveforms. Modified auxiliary pulse waveforms maintained the high efficacy obtained from the AC PDP with an auxiliary electrode. The proposed reciprocal sustain and modified auxiliary pulses waveforms can induce stable discharges in long-coplanar gap discharges and can control wall charges with a wider auxiliary pulse voltage margin, thereby enhancing the luminous efficacy of the AC PDP with an auxiliary electrode.

  • PDF

Analysis of Arterial Stiffness by Age Using Pulse Waveform Measurement of 5-levels Graded Pressure (5단계 가압 맥파측정에 의한 연령별 혈관 경화도 분석)

  • Kwon, Sun-Min;Kang, Hee-Jung;Yim, Yun-Kyoung;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.27 no.2
    • /
    • pp.107-120
    • /
    • 2010
  • Objectives : The aim of this study is to measure pulse waveforms by applying 5-level graded pressure, and selecting optimum pulse waveforms. Also to proposing the possibility of using AW(Area of the 1/3 upper height of h1) rate in respect to AT(Total Area) for risk assessment of hypertension or arteriosclerosis is another aim of the study. Methods : Pulse waveforms of normotensive were measured by 5-level graded pressure. The pulse waveforms well reflecting properties of blood vessel(having the largest h1) were selected for optimum pulse waveforms. Various parameters(h-parameter, t-parameter, and others) of optimum pulse waveforms were analyzed. AIx(Augmentation index) was calculated by height-parameters to assess arterial stiffness. The area rate of the 1/3 upper height for h1 in respect to total area was analyzed according to aging. Results : According to aging 1. in height-parameter, h2 and h3 were increased but h5 was decreased. 2. In time-parameter, t2, t3, and t5 were getting short. 3. Area of systolic period was increased, and that of diastolic period decreased. 4. AIx rose by aging. 5. AW was significantly increased despite no changes in AT. Conclusions : By analyzing optimum pulse waveforms of 5-level graded pressure method, we could complement weakness of single graded pressure method. Also, possibility of applying the AW rate to risk assessment of hypertension or arteriosclerosis was confirmed in normotensive population which might not be assessed by AIx.

Effects of Various Sustain Waveforms on Discharge Characteristics under High Xe Gas Mixture in AC-PDP

  • Park, Dong-Hyun;Cho, Byung-Gwon;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1237-1240
    • /
    • 2005
  • The effects of various sustain waveforms on the discharge characteristics, such as discharge current waveform, IR waveform, luminance, luminous efficiency, power consumption, and static margin are investigated under high Xe (20%) gas mixture at 200 kHz. The four types of sustain waveforms, such as non-overlapped sustain waveform without auxiliary pulse, non-overlapped sustain waveform with auxiliary pulse, overlapped sustain waveform without auxiliary pulse, overlapped sustain waveform with auxiliary pulse, are examined intensively. As a result, the overlapped sustain waveform with auxiliary pulse shows the best discharge characteristics under high Xe (20%) gas mixture at 200 kHz.

  • PDF

Sinusoidal, Pulse, Triangular Oscillator Using Second Generation Current Conveyor

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.566-569
    • /
    • 2010
  • This paper describes the sinusoidal, pulse, triangular oscillator using second generation current conveyor. To obtain the sinusoidal waveform the circuit blocks are constructed by using all pass filter and integrator. The pulse and the triangular waveforms are obtained from the output of sinusoidal oscillator. The peak-to-peak voltages of sinusoidal and triangular waveforms can be easily controlled by the dc offset voltage. Also the output frequency of the oscillator can be controlled by varying passive elements. The designed circuit is verified by HSPICE simulation.

On the Design of Orthogonal Pulse-Shape Modulation for UWB Systems Using Hermite Pulses

  • Giuseppe, Thadeu Freitas de Abreu;Mitchell, Craig-John;Kohno, Ryuji
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.328-343
    • /
    • 2003
  • Orthogonal pulse-shape modulation using Hermite pulses for ultra-wideband communications is reviewed. Closedform expressions of cross-correlations among Hermite pulses and their corresponding transmit and receive waveforms are provided. These show that the pulses lose orthogonality at the receiver in the presence of differentiating antennas. Using these expressions, an algebraic model is established based on the projections of distorted receive waveforms onto the orthonormal basis given by the set of normalized orthogonal Hermite pulses. Using this new matrix model, a number of pulse-shape modulation schemes are analyzed and a novel orthogonal design is proposed. In the proposed orthogonal design, transmit waveforms are constructed as combinations of elementary Hermites with weighting coefficients derived by employing the Gram-Schmidt (QR) factorization of the differentiating distortion model’s matrix. The design ensures orthogonality of the vectors at the output of the receiver bank of correlators, without requiring compensation for the distortion introduced by the antennas. In addition, a new set of elementary Hermite Pulses is proposed which further enhances the performance of the new design while enabling a simplified hardware implementation.

Comparison of Output Characteristics of Pulsed Nd:YAG Laser using PFN Method with Multiple-Mesh (다단메쉬 PFN방식 펄스형 Nd:YAG 레이저의 출력특성 비교)

  • Joung, J.H.;Kwak, B.G.;Kim, D.H.;Moon, J.K.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1900-1902
    • /
    • 1997
  • In order to obtain various waveforms of current pulse applied at the flashlamp, we have fabricated a Pulsed Nd:YAG laser by PFN with multiple-mesh formed LC network. we have obtained various waveforms of current pulse by adjusting the values of L and C, compared these waveforms of current pulse with laser beam, and then analyzed the laser output energy. We have got relations for $E_{TH}$ and $E_L$ at each mesh which supplies energy with flashlamp and found that output of Pulsed Nd:YAG Laser for 2-mesh, 5-mesh coincided with computer's simulation, PSPICE.

  • PDF

Characteristics of the Electromagnetic Fields Radiated from Stepped Leaders Just Prior to Lightning Return Strokes (계단상 리더에 의해서 방사된 귀환뇌격 직전의 전장과 자장 파형의 특성)

  • 이복희;이동문;정동철;장근철;이승칠;정광희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • In this paper statistics on the radiation field waveforms produced by stepped leaders just prior to lightning return strokes were described. As a parameter of stepped leader pulse characteristics, the time interval between the final leader pulse and return stroke peak, the pause time between stepped leaders, the ratio of the final leader peak to the return stroke peak and the stepped leader pulse width at half maximum were examined. The average time intervals between the final leader pulse and return stroke peak were about 16.2 and 14.8$mutextrm{s}$ for the positive and negative polarities, respectively. When the stepped leader approaches closely to ground, the time interval between leader steps was decreased and the mean value was about 17$mutextrm{s}$, and the present results were in reasonable agreement with the data observed in Florida and Japan. The large fraction of the ratios of the final stepped leader pulse to the lightning return stroke peak were distributed over the range from 5 to 35% and in average the ratio of the final leader pulse to the return stroke peak was 17.4$\pm$11.9% for the positive and 18.5$\pm$9.4% for the negative electric field waveforms. In addition, the mean pulse widths at half maximum of the stepped leaders are 1.4Us with a standard deviation of 0.9 for the positive Polarity and 2.2us with a standard deviation of 1.2 for the negative polarity, respectively.

Analysis of Both Hands' Two Pulse Waveforms using a Clip-type Pulsimeter Equipped with Magnetic Sensing Hall Device

  • Rhee, Jin-Kyu;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.183-187
    • /
    • 2013
  • Two concurrent signals of the pulse wave measured from both hands' radial artery in un-pressurization condition using the prototype model of two clip-type pulsimeters with a permanent magnet and Hall device are investigated. The phase differences of two pulse waves from 22 subjects have some distinct points according to the handedness. Thus, the propagation of the pulse wave calculated from phase difference is both fast and slow to each other. It is confirmed that this phenomenon comes from the difference of blood vessel hardness between right- and left-hand of each subject rather than a quantity of muscle.

Analysis of SAR Processing Performances with FJB Waveforms (FJB 파형을 이용한 SAR 영상 생성 기법 분석)

  • Kim, Eun-Hee;Roh, Ji-Eun;Park, Joon-Yong;Kim, Soo-Bum
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.195-207
    • /
    • 2017
  • Recently, the SAR-GMTI mode is becoming increasingly essential in airborne radar systems. While SAR requires wideband waveforms for high resolution imaging, GMTI requires narrowband waveforms for doppler processing, which makes general LFM waveforms difficult to use for SAR-GMTI. This paper analyses the FJB(Frequency Jump Burst) waveform, which is studied for the SAR-GMTI waveform, and presents the method for the pulse compression and SAR image formation using FJB waveforms. Simulation results show that there is little difference in performances between the FJB waveform and the LFM waveform.