• Title/Summary/Keyword: pulse shrinking method

Search Result 3, Processing Time 0.014 seconds

On-Chip Digital Temperature Sensor Using Delay Buffers Based the Pulse Shrinking Method (펄스 수축방식 기반의 지연버퍼를 이용한 온-칩 디지털 온도센서)

  • Yun, Seung-Chan;Kim, Tae-Un;Choi, Ho-Yong
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.681-686
    • /
    • 2019
  • This paper proposes a CMOS temperature sensor using inverter delay chains of the same size based on the pulse shrinking method. A temperature-pulse converter (TPC) uses two different temperature delay lines with inverter chains to generate a pulse in proportion to temperature, and a time-digital converter (TDC) shrinks the pulse using inverter chains of the same size to convert pulse width into a digital value to be insensitive to process changes. The chip was implemented with a $0.49{\mu}m{\times}0.23{\mu}m$ area using a $0.35{\mu}m$ CMOS process with a supply voltage of 3.3V. The measurement results show a resolution of $0.24^{\circ}C/bit$ for 9-bit data for a temperature sensor range of $0^{\circ}C$ to $100^{\circ}C$.

Phoneme Separation and Establishment of Time-Frequency Discriminative Pattern on Korean Syllables (음절신호의 음소 분리와 시간-주파수 판별 패턴의 설정)

  • 류광열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1324-1335
    • /
    • 1991
  • In this paper, a phoneme separation and an establishment of discriminative pattern of Korean phonemes are studied on experiment. The separation uses parameters such as pitch extraction, glottal peak pulse width of each pitch. speech duration. envelope and amplitude bias. The first pitch is extracted by deviations of glottal peak and width. energy and normalization on a bias on the top of vowel envelope. And then, it traces adjacent pitch to vowel in whole. On vewel, amethod to be reduced gliding pattern and the possible of vowel distinction to be used just second formant are proposed, and shrinking pitch waveform has nothing to do with pitch length is estimated. A pattern of envelope, spectrum, shrinking waveform, and a method of analysis by mutual relation among phonemes and manners of articulation on consonant are detected. As experimental results, 90% on vowel phoneme, 80% and 60% on initial and final consonant are discriminated.

  • PDF

Muscular Adaptations and Novel Magnetic Resonance Characterizations of Spinal Cord Injury

  • Lim, Woo-Taek
    • Physical Therapy Korea
    • /
    • v.22 no.2
    • /
    • pp.70-80
    • /
    • 2015
  • The spinal cord is highly complex, consisting of a specialized neural network that comprised both neuronal and non-neuronal cells. Any kind of injury and/or insult to the spinal cord leads to a series of damaging events resulting in motor and/or sensory deficits below the level of injury. As a result, muscle paralysis (or paresis) leading to muscle atrophy or shrinking of the muscle along with changes in muscle fiber type, and contractile properties have been observed. Traditionally, histology had been used as a gold standard to characterize spinal cord injury (SCI)-induced adaptation in spinal cord and skeletal muscle. However, histology measurements is invasive and cannot be used for longitudinal analysis. Therefore, the use of conventional magnetic resonance imaging (MRI) is promoted to be used as an alternative non-invasive method, which allows the repeated measurements over time and secures the safety against radiation by using radiofrequency pulse. Currently, many of pathological changes and adaptations occurring after SCI can be measured by MRI methods, specifically 3-dimensional MRI with the advanced diffusion tensor imaging technique. Both techniques have shown to be sensitive in measuring morphological and structural changes in skeletal muscle and the spinal cord.