• Title/Summary/Keyword: pulse shape analysis

Search Result 116, Processing Time 0.029 seconds

Determination of $^{241}Pu$ in Environmental Samples Using Liquid Scintillation Counting System (액체섬광계수기를 이용한 환경시료중 $^{241}Pu$분석)

  • Lee, Myung-Ho;Hong, Kwang-Hee;Choi, Yong-Ho;Kim, Sang-Bog;Choi, Geun-Sik;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.2
    • /
    • pp.91-98
    • /
    • 1996
  • An optimized method for determining beta-emitting $^{241}Pu$ in the presence of alpha-emitting nuclides was developed using a liquid scintillation counting system. Pulse shape analysis (PSA) level was set using pulse-shape discrimination method and the $^{241}Pu$ counting channel was adjusted for maximum value of figure of merit using the 241pu standard source. The volume of scintillant was determined for the maximum value of counting efficiency. This optimized method has been applied to environmental samples to measure concentration of $^{241}Pu$ in soils and mosses. Also it has been identified the origin of Pu deposited in Korea from the activity ratio of $^{241}Pu/^{239,\;240}Pu$.

  • PDF

Research on Subcutaneous Pulse Shape Measurement by Near-infrared Moiré Technique

  • Chen, Ying-Yun;Liu, Zhizhen;Du, Jian;Chang, Rong-Seng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • A pulse is generated when the heart pumps blood into the arterial system. The heart pumps blood only when it contracts, not when it relaxes; therefore, blood enters the arterial system in a cyclical form. Artery beating is visible in some parts of the body surface, such as the radial artery of the wrist. This paper mainly uses the feature in which near-infrared spectroscopy penetrates skin to construct a non-invasive measurement system that can measure small vibration in the subcutaneous tissue of the human body, and then uses it for the pulse measurement. This measurement system uses the optical moir$\acute{e}$ principle, together with the fringe displacement made by small vibration in the subcutaneous tissue, and an image analysis program to calculate the height variation from small vibrations in the subcutaneous tissue. It completes a measurement system that records height variation with time, and that together with a fast Fourier transform (FFT) program, they can convert the pulse waveform generated by vibration (time-amplitude) to heartbeat frequency (frequency-amplitude). This is a new and non-invasive medical assistance system for measuring the pulse of the human body, with the advantages of being simple, fast, safe and objective.

Reduced Rating T-Connected Autotransformer Based Thirty-Pulse AC-DC Converter for Vector Controlled Induction Motor Drives

  • Singh Bhim;Bhuvaneswari G.;Garg Vipin
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.214-225
    • /
    • 2006
  • The design and performance analysis of a reduced rating autotransformer based thirty-pulse AC-DC converter is carried out for feeding a vector controlled induction motor drive (VCIMD). The configuration of the proposed autotransformer consists of only two single phase transformers, with their windings connected in a T-shape, resulting in simplicity in design, manufacturing and in a reduction in magnetics rating. The design procedure of the autotransformer along with the newly designed interphase transformer is presented. The proposed configuration has flexibility in varying the transformer output voltage ratios as required. The design of the autotransformer can be modified for retrofit applications, where presently a 6-pulse diode bridge rectifier is used. The proposed thirty-pulse AC-DC converter is capable of suppressing less than $29^{th}$ harmonics in the supply current. The power factor is also improved to near unity in the wide operating range of the drive. A comparison of different power quality indices at AC mains and DC bus is demonstrated in a conventional 6-pulse AC-DC converter and the proposed AC-DC converter feeding a VCIMD. A laboratory prototype of the proposed autotransformer based 30-pulse AC-DC converter was developed with test results validating the proposed design and system.

Theoretical Analysis of Impact of Q-switch Rise Time on Output Pulse Performance in an Ytterbium-doped Actively Q-switched Fiber Laser (이터븀 첨가 능동형 Q-스위칭 광섬유 레이저에서 Q-스위치 상승 시간이 출력 펄스에 미치는 영향에 대한 이론적 분석)

  • Jeon, Jinwoo;Lee, Junsu;Lee, Ju Han
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.58-63
    • /
    • 2013
  • A theoretical analysis of the impact of rise time of a Q-switch on the output pulse performance is carried out in an Ytterbium-doped actively Q-switched fiber laser. The finite difference time domain (FDTD) method is used to numerically simulate the Q-switched fiber laser. It is shown that stable Gaussian-like pulse shape can be generated when the Q-switch rise time is increased and pulse repetition rate is enlarged.

Observation of Plasma Shape by Continuous dc and Pulsed dc (직류 방전과 펄스 직류 방전에 의한 플라즈마 형상 관찰)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Effects of bipolar pulse driving frequency between 50 kHz and 250 kHz on the discharge shapes were analyzed by measuring plasma characteristics by OES (Optical Emission Spectroscopy) and Langmuir probe. Plasma characteristics were modeled by a simple electric field analysis and fluid plasma modeling. Discharge shapes by a continuous dc and bipolar pulsed dc were different as a dome-type and a vertical column-type at the cathode. From OES, the intensity of 811.5 nm wavelength, the one of the main peaks of Ar, decreased to about 43% from a continuous dc to 100 kHz. For increasing from 100 kHz to 250 kHz, the intensity of 811.5 nm wavelength also decreased by 46%. The electron density decreased by 74% and the electron temperature increased by 36% at the specific position due to the smaller and denser discharge shape for increasing pulse frequency. Through the numerical analysis, the negative glow shape of a continuous dc were similar to the electric potential distribution by FEM (Finite Element Method). For the bipolar pulsed dc, we found that the electron temperature increased to maximum 10 eV due to the voltage spikes by the fast electron acceleration generated in pre-sheath. This may induce the electrons and ions from plasma to increase the energetic substrate bombardment for the dense thin film growth.

Performance Analysis of UWB Systems in the Presence of Timing Jitter

  • Guvenc, Ismail;Arslan, Huseyin
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2004
  • In this paper, performances of different ultra-wideband (UWB) modulation schemes in the presence of timing jitter are evaluated and compared. Static and Rayleigh fading channels are considered. For fading channels, Oat and dispersive channels are assumed. First, bit error rate (BER) performances for each case are derived for a fixed value of timing jitter. Later, a uniform distribution of jitter is assumed to evaluate the performance of the system, and the theoretical results are verified by computer simulations. Finger estimation error is treated as timing jitter and an appropriate model is generated. Furthermore, a worst case distribution that provides an upper bound on the system performance is presented and compared with other distributions. Effects of timing jitter on systems employing different pulse shapes are analyzed to show the dependency of UWB performance on pulse shape. Although our analysis assumes uniform timing jitter, our framework can be used to evaluate the BER performance for any given probability distribution function of the jitter.

Pulse Diagnosis Algorithm and Digital Filter Design for Development of Digital Biomedical System (전자 맥진기 시스템 개발을 위한 맥파분석 알고리즘과 디지털 필터 설계)

  • Kim, Sang-Ho;Lim, Duk-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4473-4482
    • /
    • 2010
  • The examination of pulse, which is a typical palpation technique in the oriental medicine, has been used conventional analog system for discrimination of 28 pulses. However, the clipping phenomenon in the pulses, which used same feature extraction technique with ECG signals, has been occurred in analog system due to feature extraction method and over amplification from the input signals. It caused inaccurate to analyze the pulse signals. In this paper, we propose a digital filter design technique based on Prony's method for signal modeling and C-spline interpolation for feature extraction from pulse signal to compensate analog pulse detection system. In addition, we suggest a compensated electronic pulse detection system comprising new pulse analyzing algorithm and shape analysis technique for pulses, which were difficult to use in analog system. The feasibility for new proposed system has been confirmed comparing output signals between electronic pulse detection system having proposed filter design techniques with pulse analyzing algorithm and conventional analog system.

Shock Analysis of Magnetic Rotating Disk and Head (자기 회전 디스크와 헤드의 충격해석)

  • 장영배;박대경;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.533-538
    • /
    • 2002
  • This research demonstrates the transient response of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. head-suspension system is modeled by the cantilever in order to get simulation results. Simulation results about total system of HDA are calculated by Runge-Kutta method.

  • PDF

Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force (전자기력을 이용한 박판 성형공정의 해석적 연구)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.

Study on the Optimization of Pulse GTAW Process for Diaphragm with Thin Thickness (극박 다이아프램의 펄스 GTAW 공정 최적화에 관한 연구)

  • Park, Hyoung-Jin;Hwang, In-Sung;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • This paper has aimed to prevent excessive heat input by controlling arc distribution and heat input capacity with pulse GTAW in order to improve weld quality in 0.08mm pressure gauge diaphragm and flange welding parts. A design of experiment was designed using Box-Behnken method to optimize a welding process. The pulse GTAW parameters such as pulse current, base current, pulse duty, frequency and welding speed were set to input variables while hydraulic pressure that represents welding characteristics in diaphragm and flange joint were set to output variables. Based on the test result, a second regression equation was obtained between input and output variables and turned out significant. Besides, an influence of parameters has been confirmed through response surface analysis using the second-order regression equation and optimum welding condition was obtained through a grid-search method. The optimum welding condition was set to pulse current 84.4(A), base current 29.6(A), pulse duty 58.8(%), frequency 10(%), and welding speed 596(mm/min). Then, decent bead shape was acquired with no excessive heat input under the $2.3kgf/cm^2$ of hydrostatic pressure.