• Title/Summary/Keyword: pulse sensor

Search Result 548, Processing Time 0.023 seconds

2-dimensional Measurement of Arterial Pulse by Imaging Devices (촬상소자를 이용한 맥동의 2차원 계측)

  • Kim, Ki-Wang
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.12 no.2
    • /
    • pp.8-17
    • /
    • 2008
  • Objectives: For the traditional pulse diagnosis in Oriental Medicine, not only the pulse shape in time domain, but the width, length and depth of arterial pulse also should be measured. However, conventional pulse diagnostic systems have failed to measure the spatial parameters of the arterial pulse e.g. effective length of arterial pulse in the wrist. In fact, there are many ways to measure that kind of spatial features in arterial pulsation, but among them, the method using image sensor provides relatively cheap and simple way, therefore I tested feasibility of measuring 2-dimensional pressure distribution by imaging devices. Methods: Using widely used PC cameras and dotted balloons, the subtle oscillation of skin over the radial artery was recorded continuously, and then the displacement of every dot was calculated. Consequently, the time course of that displacements shows arterial pulse wave. Results: By the proposed method I could get pressure distribution map with 30Hz sampling rate, 21steps quantization resolution, and approximately 1mm spatial resolution. With reduced quantization resolution, $3cm{\times}4cm$ view angle could be achieved. Conclusion: Although this method has some limitations, it would be useful method for detecting 2-dimensional features of arterial pulse, and accordingly, this method provides a novel way to detect 'narrow pulse', 'wide pulse', 'long pulse', 'short pulse', and their derivatives.

  • PDF

3-dimensional Coordinate Measurement by Pulse Magnetic Field Method (자기적 방법을 이용한 3차원 좌표 측정)

  • Im, Y.B.;Cho, Y.;Herr, H.B.;Son, D.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.206-211
    • /
    • 2002
  • We have constructed a new kind of magnetic motion capture sensor based on the pulse magnetic field method. 3-orthogonal magnetic pulse fields were generated in turns only one period of sinusoidal waveform using 3-orthogonal magnetic dipole coils, ring counter and analog multiplier. These pulse magnetic fields were measured with 3-orthogonal search coils, of which induced voltages by the x-, y-, and l-dipole sources using S/H amplifier at the time position of maximum induced voltage. Using the developed motion capture sensor, we can measure position of sensor with uncertainty of ${\pm}$0.5% in the measuring range from ${\pm}$0.5 m to ${\pm}$1.5 m.

Target Path Detection Algorithm Using Activation Time Lag of PDR Sensors Based on USN (USN기반 PDR 센서의 검출 시간차를 이용한 표적 경로 검출 알고리즘)

  • Lee, Jaeil;Lee, Chong Hyun;Bae, Jinho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.179-186
    • /
    • 2015
  • This paper proposes the target path detection algorithm using statistical characteristics of an activated time lag along a moving path of target from a neighboring sensor in PDR(Pulse Doppler Radar) sensor node environment based on USN(Ubiquitous Sensor Network) with a limitation detecting only an existence of moving target. In the proposed algorithm, detection and non-detection time lag obtained from the experimental data are used. The experimental data are through repetitive action of each 500 times about three path scenarios such as passing in between two sensors, moving parallel to two sensors, and turning through two sensors. From this experiments, error detection percentages of three path scenarios are 5.67%, 5.83%, and 7.17%, respectively. They show that the proposed algorithm can exactly detect a target path using the limited PDR sensor nodes.

Pulse Detection from PPG Signal with Motion Artifact using Independent Component Analysis and Nonlinear Auto-correlation (독립 성분 분석과 비선형 자기상관을 이용한 동잡음이 포함된 PPG 신호에서의 맥박 검출)

  • Jeon, Hak-Jae;Kim, Jeong-Do;Lim, Seung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2016
  • PPG signal measured by pulse oximeter can measure pulse and the oxygen saturation of arterial blood. But the PPG signal is distorted by finger movement or other movement in the body. To detect pulse from the PPG signal with motion artifact, we use band pass filter(BPF), Independent component analysis(ICA) and nonlinear autocorrelation(NAC). BPF is used to remove DC component and high frequency noise in the PPG signal with motion artifacts. ICA is used to separate pulse signal and motion artifact. However, pulse signal separated by ICA have no choice but to accompany signal distortion because pulse signal and motion artifact are not completely independent. So, we use nonlinear autocorrelation to emphasize the pure pulse signal from the distorted signal.

Extraction of Respiratory Rate by using FFT for Radial Artery Pulse Waves Acquisited by Clip-type Pulsimeter with a Hall Sensor (홀센서 집게형 맥진기 요골동맥파에 FFT를 적용한 호흡수 추출 연구)

  • Cho, Hyun-Sung;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.178-182
    • /
    • 2012
  • This research suggested that the extraction of respiratory rate could be made possible by using frequency analysis in the data process for clip-type pulsimeter equipped with permanent magnet and Hall sensor. The pulse analysis included of cardiac motion information depending on variation of pulse waveforms is investigated by means of Fast Fourier Transformation (FFT). The peaks of FFT spectrums measured at 15, 20, 30, 40, and 50 tempos are coincided to each respiratory rate having 0.125 Hz, 0.16 Hz, 0.25 Hz, 0.33 Hz, and 0.41 Hz, respectively. The FFT spectrum using algorithm for the extraction of respiratory rate showed the best pulse waves measured during 300 s. Based upon these results, the clip-type pulsimeter could extract the effective respiratory rate reflecting physical effects.

Development of Oriental-Western Fusion Patient Monitor by Using the Clip-type Pulsimeter Equipped with a Hall Sensor, the Electrocardiograph, and the Photoplethysmograph (홀센서 집게형 맥진기와 심전도-용적맥파계를 이용한 한양방 융합용 환자감시장치 개발연구)

  • Lee, Dae-Hui;Hong, Yu-Sik;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.135-143
    • /
    • 2013
  • The clip-type pulsimeter equipped with a Hall sensor has a permanent magnet attached in the "Chwan" position to the center of a radial artery. The clip-type pulsimeter is composed of a hardware system measuring voltage signals. These electrical bio-signals display pulse rate, non-invasive blood pressure, respiratory rate, pulse wave velocity (PWV), and spatial pulse wave velocity (SPWV) simultaneously measured by using the radial artery pulsimeter, the electrocardiograph (ECG), and the photoplethysmograph (PPG). The findings of this research may be useful for developing a oriental-western biomedical signal storage device, that is, the new and fusion patient monitor, for a U-health-care system.

Software PLL Based Speed Control of High Speed Miniature BLDC (소프트웨어 PLL 기반 소형 고속 BLDC의 속도 제어)

  • Park, Tae-Hub;Seok, Seung-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.132-135
    • /
    • 2008
  • This paper presents a PLL(Phase Lock Loop) control method for speed control of high speed miniature BLDCM(Brushless DC Motor) using hall sensor. The Proposed PLL based speed control method uses a only phase shift between reference pulse signal according to speed reference and actual pulse signal from hall sensor. It doesn't use any speed calculation, and calculates a direct current reference from phase shift. The current reference is changed to reduce the phase shift between reference and actual pulse. So the actual speed can keep the reference speed. The proposed control scheme is very simple but effective speed control is possible.

  • PDF

Time-division Visible Light Communication Using LED Lamp Light

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.145-150
    • /
    • 2015
  • We introduce a new method of time-division visible light communication (VLC) using LED lamp light for the generation of synchronizing pulses. The LED lamp, driven by an AC 220-V power line, radiates light that has a 120-Hz frequency component. The pulse generator in each VLC system receives the LED lamp light and generates the synchronizing pulses that are required for time-division transmission of multiple VLC channels. The pulse period is subdivided into several time slots for VLC channels. In experiments, 120-Hz synchronizing pulses were generated using LED lamp light, and three VLC channels were transmitted independently without interfering with each other in a condition where the VLC signals overlapped in space. This configuration is useful in constructing multiple wireless sensor networks that are safe and without interference in locations where LED lamps are used for illumination.

A Study on Factors Influencing P-wave Velocity of Concrete (콘크리트의 P파 속도에 영향을 주는 인자에 관한 연구)

  • 이광명;이회근;김동수;김지상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.725-730
    • /
    • 1998
  • Recently, non-destructive tests are getting popular in evaluating concrete properties without braking specimens. Among several NDT methods, P-wave velocity measurement technique has been widely used to evaluate the stiffness and strength of concrete. The purpose of this study is to investigate factors influencing P-wave velocity measured by impact-resonant method and ultrasonic pulse velocity method, such as moisture content of concrete, existence and size of coarse aggregates, sensor and sampling rate. Test results show that rod-wave velocity measured by impact-resonant method and ultrasonic pulse velocity are significantly affected by the moisture content of concrete, i.e., the lower moisture content, the lower velocity. Moisture content influences rod-wave velocity stronger than ultrasonic pulse velocity. Rod-wave velocity is faster in concrete than in mortar and is also faster in concrete containing small size aggregates. Sensor and sampling rate have little influence on velocity.

  • PDF

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.