• 제목/요약/키워드: pulse forming

Search Result 110, Processing Time 0.034 seconds

Various Pulse Forming of Pulsed $CO_2$ laser using Multi-pulse Superposition Technique

  • Chung, Hyun-Ju;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.127-132
    • /
    • 2001
  • We describe the pulse forming of pulsed $CO_2$laser using multi-pulse superposition technique. A various pulse length, high duty cycle pulse forming network(PFN) is constructed by time sequence. That is, this study shows a technology that makes it possible to make various pulse shapes by turning on SCRs of three PFN modules consecutively at a desirable delay time with the aid of PIC one-chip microprocessor. The power supply for this experiment consists of three PFN modules. Each PFN module uses a capacitor, a pulse forming inductor, a SCR, a High voltage pulse transformer, and a bridge rectifier on each transformer secondary. The PFN modules operate at low voltage and drive the primary of HV pulse transformer. The secondary of the transformer has a full-wave rectifier, which passes the pulse energy to the load in a continuous sequence. We investigated laser pulse shape and duration as various trigger time intervals of SCRs among three PFN modules. As a result, we can obtain laser beam with various pulse shapes and durations from about 250 $mutextrm{s}$ to 600 $mutextrm{s}$.

  • PDF

A Peaking Switch to Generate a High Voltage Pulse of Sub-nanosecond Rise Time (서브 나노초 상승시간의 고전압 펄스 발생용 피킹 스위치)

  • Roh, Young-Su;Jin, Yun-Sik;Cho, Chu-Hyun;Lim, Soo-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1300-1305
    • /
    • 2012
  • A triaxial Blumlein pulse forming line has been designed to generate a pulse whose voltage is ~300 kV, pulse duration is ~5 ns, and rise time is ~500 ps. It turns out, however, that the rise time of the pulse becomes much longer than 500 ps due to parasitic inductances and capacitances existing inside the system. A peaking switch has been developed to shorten the rise time of the pulse from Blumlein pulse forming line. In the peaking switch, a wedge-shaped dielectric material (MC 901 nylon) is employed to surround the electrode on the antenna side. This shape inhibits an abrupt change of the output impedance, thereby minimizing the reflection of the output pulse. Experimental results show that the peaking switch is capable of improving the rise time of the pulse at a level of 500 ps.

Pulse forming's switching control adopted a Transcranial Magnetic Stimulation Biomedical engineering, Dongju College University (펄스포밍의 스위칭 제어기술을 적용한 경두개 자기자극장치)

  • Kim, Whi-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.729-736
    • /
    • 2010
  • In this study, a magnetic stimulation (MS) device with controllable pulse forming technology and pulse shape (MS) is described. The MS device uses an IGBT with appropriate snubbers to switch coil currents up to 6 kA, enabling pulse forming technology control from 5 s to over 100 s. The induced electric field pulses use 2% - 34% less energy and generate 57% - 67% less coil heating compared to matched conventional cosine pulses. MS is used to stimulate rhesus monkey motor cortex in vivo with pulse forming technology of 20 to 100 s, demonstrating the expected decrease of threshold pulse amplitude with increasing pulse forming technology. The technological solutions used in the MS prototype can expand functionality, and reduce power consumption and coil heating in MS, enhancing its research and therapeutic applications.

A Fundamental Study on Magnetic Pulse Forming with Bar Forming Coil (Bar 성형 코일을 이용한 전자기 성형에 관한 기초 연구)

  • Shim, Ji-Yeon;Kang, Bong-Yong;Park, Dong-Hwan;Kim, Ill-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.292-297
    • /
    • 2011
  • MPF(Magnetic pulse forming) process refers to the high velocity and high strain rate deformation of a low-ductility materials driven by electromagnetic forces that are generated by the rapid discharge current through forming coil. The goal of this study was to find the characteristics of dynamic behavior of workpiece and to find the main design process on MPF using bar forming coil. For these purposes, thin Al5053 sheet were used for the experiment. The measured strain data were analyzed by developed electromagnetic FE-model. The main design parameter is location of coil, electromagnetic force. In case of the bar forming coil, there exists the dead regions where the low electromagnetic force applied on the workpiece.

Generation of a High Voltage Pulse of 50 ns Pulse Duration using a Helical Blumlein Pulse Forming Line (나선형 블룸라인 PFL을 이용한 50 ns 펄스폭의 고전압 펄스 발생)

  • Roh, Youngsu;Jin, Yun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.786-791
    • /
    • 2013
  • A high voltage pulse generator based on the Blumlein pulse forming line (PFL) was fabricated to produce a voltage pulse whose peak value is ~300 kV and pulse duration is ~50 ns. Three cylindrical electrodes, such as inner, middle, and outer electrodes, are concentrically placed to make a compact PFL. To increase the pulse duration of the output pulse without any change of the size of the generator, the middle electrode is replaced by a helical strip electrode. To determine the radius of the helical electrode, the impedance of the helical Blumlein PFL is calculated using an approximate formula where the dispersive property of the helical Blumlein PFL is not considered. The dependence of the impedance on the frequency is computed by a commercial program. The number of turns in the helical electrode is decided to provide a demanded pulse duration. The experimental result shows that the helical Blumlein PFL is capable of making a high voltage pulse of ~50 ns pulse duration.

Generation of Ultrawide Band Electromagnetic Pulse from Blumlein Pulse Forming Line

  • Jin, Yun Sik;Kim, Jong Soo;Cho, Chuhyun;Roh, Young Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.677-681
    • /
    • 2014
  • A high voltage pulse generator was fabricated to radiate ultrawide band electromagnetic pulse. A coaxial type of Blumlein pulse forming line is employed to produce a pulse of high voltage (>300 kV) and short pulse duration (~5 ns). A helical strip/wire type of air-cored pulse transformer was used to charge the Blumlein pulse forming line up to more than 300 kV. A peaking switch is essential to make the pulse rise time as fast as possible. Typically, the rise time is ~500 ps. The output pulse of the generator is radiated into air through an exponentially tapered TEM horn antenna. The electric field intensity of a radiated pulse was measured as a function of the distance from the transmitting horn as well as the output voltage of the peaking switch. The peak-to-peak value of the electric field intensity at 10 m from the TEM antenna was~100 kV/m.

High Efficiency Ozone Generation Using a Pyramid-Project-Embossed Rod-to-Cylinder Electrode and a Pulse Corona Discharge (도깨비봉형 오존발생장치이 펄스커로나 방전에 의한 오존 발생 특성)

  • 문재덕;이근택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.8
    • /
    • pp.650-657
    • /
    • 1989
  • The conversion efficiency of an ozone generator can be significantly improved by modifying the discharge electrode of a helical strip line rod-to-cylinder type ozone generator to a pyramid-project-embossed rod, and by using a pulse corona discharge. Parametric studies have been carried out to obtain optimum values of peak pulse voltage, pulse forming capacitance, feeder cable and ozone generator capacitance, interelectrode spacing and corona tip density of ozone generator, and feed air flow rate and temperature. The generated ozone concentration was very dependent upon the value of pulse forming capacitance, feeder cable and ozone generator capacitance, and corona tip density. Maximum conversion efficiency was obtained with a pulse forming capacitance of about 500pF, 75pF matched feeder cable and ozone generator, and a corona tip density of 16mm. When operated at optimum values, ozone yield of 79, 99, 80 g/KWh for the different interelectrode type ozone generators tested were obtained, which are approximately 30% higher than that of an industrial ozone generator.

  • PDF

Analysis of Output Pulse of High Voltage and Nanosecond Blumlein Pulse Generator

  • Roh, Young-Su;Jin, Yun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.150-155
    • /
    • 2013
  • A high voltage and nanosecond Blumlein pulse generator has been developed to produce an output pulse whose voltage level is greater than 250 kV and pulse duration 5 ns. The generator consists of various components such as a charging circuit, a pulse transformer, and a spark gap switch. As a heart of the generator, a Blumlein pulse forming line has been constructed in the cylindrical form using three cylindrical aluminum electrodes that are placed concentrically. Unlike the ideal Blumlein line, the output pulse of an actual Blumlein line may be affected by stray inductances and capacitances of switching and charging components, thereby degrading the performance of the generator. In this paper, PSPICE simulations have been performed to examine effects of stray inductances and capacitances on waveforms of output pulses. Simulation results show that the pulse waveform is significantly distorted mainly by the stray inductance of the spark gap switch.

Study on Design Parameters that Affect the Forming Force of the Magnetic Pulse Forming Device (자기 펄스 성형장치의 성형력에 영향을 미치는 설계 파라미터에 관한 연구)

  • Lee, Man Gi;Yi, Hwa Cho;Kim, Jin Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.79-82
    • /
    • 2015
  • The design parameter study about the magnetic pulse forming is performed using finite element analysis with MAXWELL. The first case of design parameters is about the initial charging voltage and the capacitance and the second case of design parameters are about the winding turns and the spacing of electromagnetic coil. The 3D finite element model of electromagnetic forming system is created and the magnetic force is calculated. The effects of design parameters on the magnetic forming force are investigated.

Fabrication and Operation Testing of an Air-cored Pulse Transformer for Charging a High Voltage Pulse Forming Line (고압 펄스 성형라인 충전을 위한 공심형 고압 펄스트랜스의 제작과 동작 특성)

  • Jin, Yun-Sik;Kim, Young-Bae;Kim, Jong-Soo;Ryoo, Hong-Je;Cho, Chu-Hyun;Rim, Geun-Hee;Lim, Soo-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.939-944
    • /
    • 2010
  • A high voltage air-cored helical strip/wire type pulse transformer has been fabricated for charging of a high voltage pulse forming line. As a primary coil, copper strip of 25mm width was wound helically around a MC nylon cylinder. For a secondary coil, copper enameled wire of 1mm diameter was wound around conical cylinder in order to provide insulation between two windings. The coupling coefficient of 0.53 was obtained when two coils were combined coaxially in the insulation oil filled chamber. Voltage gain and energy transfer efficiency were investigated by varying the parameters of primary and secondary circuit. Test results shows that the voltage gain increases up to 17 with increasing the primary capacitance up to 200nF. And highest energy transfer efficiency of 44% was obtained when the dual resonant operation condition was nearly satisfied. The pulse transformer developed in this study can be used for charging the middle conductor of a Blumlein pulse forming line.