• Title/Summary/Keyword: pulse experiments

Search Result 556, Processing Time 0.025 seconds

Multistage Pulse Jamming Suppression Algorithm for Satellite Navigation Receiver

  • Yang, Xiaobo;Feng, Jining;Xu, Ying
    • Journal of Information Processing Systems
    • /
    • v.18 no.1
    • /
    • pp.89-96
    • /
    • 2022
  • A novel multistage pulse jamming suppression algorithm was proposed to solve the anti-pulse jamming problem encountered in navigation receivers. Based on the characteristics of the short duration of pulse jamming and distribution characteristics of satellite signals, the pulse jamming detection threshold was derived. From the experiments, it was found that the randomness of pulse jamming affects jamming suppression. On this basis, the principle of the multistage anti-pulse jamming algorithm was established. The effectiveness of the anti-jamming algorithm was verified through experiments. The characteristics of the algorithm include simple determination of jamming detection threshold, easy programming, and complete suppression of pulse jamming.

Application of Plackett-Burman model in welding experiments : effects of welding parameters on bead shape in Cu-Ni PULSE MIG process (PLACKETT-BURMAN MODEL을 이용한 Cu-Ni합금의 PULSE MIG 용접 변수해석)

  • 문영훈;이기학;허성도
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.47-53
    • /
    • 1987
  • The purpose of this study is to reexamine our test method in the light ofstatistical methods for data interpretation. Our trial to apply Plackett-Burman statistical model in multifactorial welding experiments shows that is saves much time and cost and extracts very accurate results. In this study, the parametric effects of bead shape on pulse MIG process in Cu-Ni alloy are investigated for verifying our trial.

  • PDF

Evaluation of reactor pulse experiments

  • I. Svajger;D. Calic;A. Pungercic;A. Trkov;L. Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1165-1203
    • /
    • 2024
  • In the paper we validate theoretical models of the pulse against experimental data from the Jozef Stefan Institute TRIGA Mark II research reactor. Data from all pulse experiments since 1991 have been collected, analysed and are publicly available. This paper summarizes the validation study, which is focused on the comparison between experimental values, theoretical predictions (Fuchs-Hansen and Nordheim-Fuchs models) and calculation using computational program Improved Pulse Model. The results show that the theoretical models predicts higher maximum power but lower total released energy, full width at half maximum and the time when the maximum power is reached is shorter, compared to Improved Pulse Model. We evaluate the uncertainties in pulse physical parameters (maximum power, total released energy and full width at half maximum) due to uncertainties in reactor physical parameters (inserted reactivity, delayed neutron fraction, prompt neutron lifetime and effective temperature reactivity coefficient of fuel). It is found that taking into account overestimated correlation of reactor physical parameters does not significantly affect the estimated uncertainties of pulse physical parameters. The relative uncertainties of pulse physical parameters decrease with increasing inserted reactivity. If all reactor physical parameters feature an uncorrelated uncertainty of 10 % the estimated total uncertainty in peak pulse power at 3 $ inserted reactivity is 59 %, where significant contributions come from uncertainties in prompt neutron lifetime and effective temperature reactivity coefficient of fuel. In addition we analyse contribution of two physical mechanisms (Doppler broadening of resonances and neutron spectrum shift) that contribute to the temperature reactivity coefficient of fuel. The Doppler effect contributes around 30 %-15 % while the rest is due to the thermal spectrum hardening for a temperature range between 300 K and 800 K.

Development of a 3.6 MW, $4\;{\mu}s$, 200 pps Pulse Modulator for a High Power Magnetron (고출력 마그네트론 구동용 3.6 MW, $4\;{\mu}s$, 200 pps 펄스 모듈레이터 개발)

  • Jang Sung-Duck;Kwon Sei-Jin;Bae Young-Soon;Oh Jong-Seok;Cho Moo-Hyun;Namkung Won;Son Yoon-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • The Korean Superconducting Tokamak Advanced Research (KSTAR) tokamak device is being constructed to perform long-pulse, high-beta, advanced tokamak fusion physics experiments. The long-pulse operation requires the non-inductive current drive system such as the Lower-Hybrid Current Drive (LHCD) system. The LHCD system drives the non-inductive plasma current by means of C-band RF with 2-MW CW power and 5-GHz frequency. For the LHCD test experiments, an RF test system is developed. It is composed of a 5-GHz, 1.5-MW pulsed magnetron and a compact pulse modulator with $4\;{\mu}s$ of pulse width. The pulse modulator provides the maximum output voltage of 45 kV and the maximum current of 90 A. It is composed of 7 stages of Pulse Forming Network (PFN), a thyratron tube (E2V, CX1191D), and a pulse transformer with 1:4 step-up ratio. In this paper, the detailed design and the performance test of the pulse modulator are presented.

A STUDY ON PULSE RATE SYSTEM

  • Kim, H. K.;S. C. Han;K. K. Min;W. Huh
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.535-537
    • /
    • 1998
  • In this paper, we devised a pulse rate detection system to provide basic clinical index of cold-hot diagnosis of oriental medicine. The system consists of pulse signal detection, respiration signal detection, electrocardiograph detection, A/D conversion and computer system parts. We define a pulse rate by a pulse count to the respiration period inspiration pulse rate by a pulse count to the inspiration period, and expiration pulse rate by a pulse count to the expiration period. The clinical experiments for normal Person to evaluate the pulse rate detection system show the pulse/respiration ratio of 4.30${\pm}$1.03, the pulse/inspiration ratio of 1.60${\pm}$0.32, the pulse/expiration ratio of 2.37${\pm}$0.75.

  • PDF

The Fundamental Study on Pulse Jet Cleaning of Rectangular Bag-Filter System (사각형 여과 집진기 충격기류 탈진시스템의 기초 연구)

  • Piao, Cheng Xu;Kim, Tae Hyeung;Yang, Jun Ho;Li, Xiao Yu;Ha, Hyun Chul;Jung, Jae Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.2
    • /
    • pp.149-160
    • /
    • 2008
  • Bag-filter system has been widely used in industrial field to remove the particulate matters from the exhaust gas. The cylindrical type of bag-filter has been generally used. But it has many shortcomings. The reattachment of separated particles on the surface of bags could result in high pressure drop of bag-filter system and subsequent decrease of air flow rate since the cylindrical type bag-filter system should have the upward flow pattern. In addition, the supply of very high pressure pulse air jet to remove particulate matters on the surface of filter could result in a frequent rupture of bags. To overcome these shortcomings of the cylindrical type, the rectangular type was developed in the developed countries and imported to Korea. But, there was not many design data available to understand the mechanisms. Thus, the fundamental experiments were conducted in this study to get some ideas about the pulse jet cleaning of rectangular type bag filter system. The experimental factors are as follows; pulse distance, pulse duration, pulse interval, pulse pressure and pulse nozzle type. Experiments followed the factorial design method. With the shorter pulse distance, the distribution of pressure drops was relatively not uniform while the particulate removal efficiency was higher. With the longer duration of pulsing and the more number of pulse nozzle, the removal efficiency was higher and the pressure drop distribution was more uniform.

Experimental and Computational Studies of the Pulse Wave Impinging upon a Vertical Flat Plate (수직평판에 충돌하는 펄스파에 관한 실험적/수치해석적 연구)

  • 이동훈;김희동;강성황
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.285-291
    • /
    • 2001
  • The impingement of a weak shock wane discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Experiments were carried out to validate the present computations. The effects of the flat plate and baffle plate sizes on the impinging flow field over the flat plate were investigated. Shock Mach number was varied in the range from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

The Effect of Pulse Plating on the Current Efficiency in Trivalent Chromium Bath (3가크롬 도금욕에서 펄스도금조건이 전류효율에 미치는 영향)

  • 황경진;안종관;이만승;오영주
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.161-167
    • /
    • 2003
  • In order to investigate the effects of pulse plating conditions on the electrodeposition of trivalent chromium, electroplating experiments from bath with low concentration of trivalent chromium were performed. The variation of current efficiency of chromium electroplating with the electroplating conditions was explained. The maximum current efficiency of pulse plating is 6.4 times as high as that of direct plating at the same mean current density The nodular size increased with pulse plating time and the pulse frequency.

A Study on the Electrochemical Micromachining with Various Pulse Currents (전원특성에 따른 마이크로 전해가공에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.942-945
    • /
    • 2001
  • Pulse electrochemical micromachining offers significant improvements in dimensional accuracy as compared with conventional electrochemical machining. One primary issue in pulse electrochemical micromachining is to identify and control machining depth as well as interelectrode gap size. This paper presents an identification method for the machining depth by in-process analysis of machining current and interelectrode gap size. The inter electrode gap characteristics, including pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analysed based on the model and experiments.

  • PDF

An Optimization of the 3D $^{1}H-^{15}N-^{1}H$ TOCSY-HSQC and NOESY-HSQC Experiments Using Sensitivity Enhancement with Gradient Selection

  • Jeon, Young-Ho;Kim, Kuk-Hyun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.1 no.2
    • /
    • pp.103-111
    • /
    • 1997
  • Proper pulse sequences and experimental optimization for the 3D 15N edited TOCSY and NOESY spectra were described. Using sensitivity enhancement approach with coherent selection by pulsed field gradients described by Kay and co-workers, an considerable gain in sensitivity was achieved. The sensitivity was also improved by minimal water saturation using water flip-back pulse. Among the three types of TOCSY mixing pulse, named MLEV-17, DIPSI-2rc, DIPSI-2rc sequence gave the most sensitive spectrum. These results suggest an appropriate pulse sequence for for those 3D experiments for large proteins.

  • PDF