• 제목/요약/키워드: pulse electric field

검색결과 179건 처리시간 0.026초

Generation of Ultrawide Band Electromagnetic Pulse from Blumlein Pulse Forming Line

  • Jin, Yun Sik;Kim, Jong Soo;Cho, Chuhyun;Roh, Young Su
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.677-681
    • /
    • 2014
  • A high voltage pulse generator was fabricated to radiate ultrawide band electromagnetic pulse. A coaxial type of Blumlein pulse forming line is employed to produce a pulse of high voltage (>300 kV) and short pulse duration (~5 ns). A helical strip/wire type of air-cored pulse transformer was used to charge the Blumlein pulse forming line up to more than 300 kV. A peaking switch is essential to make the pulse rise time as fast as possible. Typically, the rise time is ~500 ps. The output pulse of the generator is radiated into air through an exponentially tapered TEM horn antenna. The electric field intensity of a radiated pulse was measured as a function of the distance from the transmitting horn as well as the output voltage of the peaking switch. The peak-to-peak value of the electric field intensity at 10 m from the TEM antenna was~100 kV/m.

고상 반응법에 의해 제조된 Pb$(Zr_xTi_{1-x})O_3$ 세라믹스에서 펄스 전계에 의한 전자 방출 (Pulse electric field-excited electron emission from Pb$(Zr_xTi_{1-x})O_3$ ceramics prepared by conventional solid state reaction)

  • 곽상희;김태희;박경봉;김창수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1867-1869
    • /
    • 1999
  • Pulse electric field induced electron emission from ferroelectrics has been studied with Pb$(Zr_xTi_{1-x})O_3$ ceramics with varying Zr/Ti ratio from 35/65 to 65/35, Electron emission was proved to be concentrated on the electrode edge by emission profile test and emission capture photographs. The 65/35 composition showed largest emission charge in lowest field and lowest emission threshold field. The emission characteristics are closely dependent on their ferroelectric properties in hysteresis curve. Electron emission charge increases with the polarization charge and emission threshold voltage is dependent on coercive field regardless of their composition. But dielectric constant has little relation with emission property. Electron emission charge increases exponentially with pulse electric field irrespective of composition. On the assumption that the surface potential is linear with the pulse electric field, electron emission can be regarded as a field emission at the electrode edge using Fowler-Nordheim plot of ln$(Q_e/E_{fe})$ to $1/E_{fe}$.

  • PDF

Electro-Osmotic Dewatering under Electro-Osmotic Pulse Technology

  • Kim, Jitae;Lee, Jeongwoo;Chung, Il-Moon
    • 지질공학
    • /
    • 제30권4호
    • /
    • pp.423-433
    • /
    • 2020
  • Direct current (DC) electric fields have been used for electro-osmotic dewatering. Under DC conditions, however, the electrical contact resistance between the electrode and the dewatering material increases considerably during the process of dewatering. Such a circumstance hinders the continuation of effective electro-osmotic dewatering. To reduce this hindrance, an applied pulse electric field with periodic reversals of the electrode polarity should improve electro-osmotic dewatering. In this study, electro-osmotic dewatering under pulse conditions was experimentally investigated for electrode polarity reversals. During the dewatering process, the pulse electric field was able to reduce the hindrance caused by the DC, resulting in an increased final dewatered amount relative to that under a DC electric field. For a constant applied voltage, the reversed polarity condition, under which the electric current passing through the material was almost unchanged with time, yielded the maximum final dewatered amount. This technique can be used to enhance drainage from a water storage facility during a period of extreme drought and the seawater desalination plants using reverse osmosis in drought stricken coastal regions.

Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

  • Lee, Gun Joon;Han, Bok Kung;Choi, Hyuk Joon;Kang, Shin Ho;Baick, Seung Chun;Lee, Dong-Un
    • 한국축산식품학회지
    • /
    • 제35권6호
    • /
    • pp.800-806
    • /
    • 2015
  • We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 µs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk.

Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines

  • Yang, Gongde;Fu, Xinghe;Lin, Mingyao;Li, Nian;Li, Hao
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.158-167
    • /
    • 2019
  • This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.

The Effect of Pulse Electric Field on Accumulation of Selenium in Cells of Saccharomyces cerevisiae

  • Pankiewicz, Urszula;Jamroz, Jerzy
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1139-1146
    • /
    • 2007
  • Cultures of Saccharomyces cerevisiae were subjected to the effect of PEF (pulse electric field) and a source of selenium. The culture period after which yeast cells were subjected to PEF treatment was optimized, as was the duration of the exposure. Optimization of the nutrient medium composition in S. cerevisiae cultures resulted in an over 1.8-fold increase in selenium accumulation with relation to cultures on the initial substrate. Optimization of the pH value and of culture duration resulted in selenium accumulation increase by approximately 78%. A significant correlation was found between the accumulation of selenium in yeast cells and its concentration in the culture substrate. The highest accumulation of selenium in the biomass of yeast, approx. $240\;{\mu}g/g$ d.m., was obtained after 15-min exposure to PEF on a 20-h culture. An approx. 50% higher content of selenium in cells was recorded, as compared with the control culture without the application of PEF.

균등전계 중에 놓인 침상 전극의 끝단에서 발생한 직류 코로나방전 특성 (Characteristics of DC Corona Discharges Caused at the tip of a Needle-shaped Electrode Placed in the Homogeneous Electric Fields)

  • 김태기;김승민;이복희
    • 조명전기설비학회논문지
    • /
    • 제29권11호
    • /
    • pp.74-81
    • /
    • 2015
  • In the measurement of atmospheric static electric field, it is important to know characteristics of corona discharges caused at the tip of test electrode. This paper presents the fundamental data of DC corona discharges that occurred at the tip of a needle-shaped electrode placed in the homogeneous background electric field which simulates the atmospheric static field under thundercloud. The major characteristics of interest for this purpose are the polarity effect of corona discharges and the magnitudes and time intervals of corona current pulses. The experimental set-up consists of the plate-to-plate configuration with a needle-shaped protrusion, DC power supply, and voltage and current measuring devices. As a result of experiments, the polarity dependence of corona pulses is significantly pronounced. The time intervals between successive corona pulses in the negative polarity is much longer than those in the positive polarity. The time intervals for both polarities is drastically decreased as the applied electric field is increased. Also the magnitudes of the positive corona pulses are slightly changed with an increase in applied electric field, but those of the negative corona pulses are linearly increased with increasing the applied electric fields.

원자간력 현미경(AFM)과 펨토초 펄스 레이저를 이용한 나노 형상 가공 (AFM-based nanofabrication with Femtosecond pulse laser radiation)

  • 김승철;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.149-150
    • /
    • 2006
  • We describe a novel method of scanning probe nanofabrication using a AFM(atomic force microscopy) tip with assistance of Femtosecond laser pulses to enhance fabrication capability. Illumination of the AFM tip with ultra-short light pulses induces a strong electric field between the tip and the metal surface, which allows removing metal atoms from the surface by means of field evaporation. Quantum simulation reveals that the field evaporation is triggered even en air when the induced electric field reaches the level of a few volts per angstrom, which is low enough to avoid unwanted thermal damages on most metal surfaces. For experimental validation, a Ti: sapphire Femtosecond pulse laser with 10 fs pulse duration at 800 nm center wavelength was used with a tip coated with gold to fabricate nanostructures on a thin film gold surface. Experimental results demonstrate that fine structures with critical dimensions less than ${\sim}10nm$ can be successfully made with precise control of the repetition rate of Femtosecond laser pulses.

  • PDF

Cavity and Interface effect of PI-Film on Charge Accumulation and PD Activity under Bipolar Pulse Voltage

  • Akram, Shakeel;Wu, Guangning;Gao, GuoQiang;Liu, Yang
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2089-2098
    • /
    • 2015
  • With the continuous development in insulation of electrical equipment design, the reliability of the system has been enhanced. However, in the manufacturing process and during operation under continues stresses introduce local defects, such as voids between interfaces that can responsible to occurrence of partial discharge (PD), electric field distortion and accumulation of charges. These defects may lead to localize corrosion and material degradation of insulation system, and a serious threat to the equipment. A model of three layers of PI film with air gap is presented to understand the influence of interface and voids on exploitation conditions such as strong electrical field, PD activity and charge movement. The analytical analysis, and experimental results are good agreement and show that the lose contact between interfaces accumulate more residual charges and in consequences increase the electric field intensity and accelerates internal discharges. These residual charges are trapped charges, injected by the electrodes has often same polarity, so the electric field in cavities increases significantly and thus partial discharge inception voltage (PDIV) decreases. Contrary, number of PD discharge quantity increases due to interface. Interfacial polarization effect has opposite impact on electric field and PDIV as compare to void.

전류자극 및 전기장 처리가 현미 발아에 미치는 영향 (Effects of Electric Current Stimuli and High-Voltage Electric Field Treatments on Brown Rice Germination)

  • 임기택;김장호;선우훈;홍지향;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제35권2호
    • /
    • pp.100-107
    • /
    • 2010
  • This study was conducted to investigate the effects of electric current stimuli and high-voltage electric field treatments on brown rice germination. The brown rice stimulated by electrical current stimuli, functional electrical stimuli of a pulse type, and high-voltage electric field treatments were observed (Type I, II and III). Treatment Type I was a method of semi-soaking brown rice with electric current stimuli of 0.13 V/cm, 0.19 V/cm, and 0.25 V/cm into Petri-dishes for 72 hours. Type II was a method of semi-soaking brown rice with functional electrical stimuli of a pulse type(DC 1 V, 1 Hz, 5%, and duty cycles of 5%, 20%, and 35%) into Petri-dishes for 72 hours. Type III was a method of water-soaking with high-voltage electric field treatments for 60 hours. High-voltage electric field treatments at 15 kV/cm were also conducted for 2.5 min, 7.5 min, and 10 min, respectively. The germination rate and the sprout growth of brown rice germinated by electric current stimuli with 0.13 V/cm, 0.19 V/cm, and 0.25 V/cm were increased by about 10-15% compared with those of the control group. The germination rate and the sprout growth of brown rice germinated by functional electrical stimuli of pulse type(DC 1 V, 1 Hz, 5% duty cycle) were increased by about 10∼15% compared to those of the control group. Also, the best effective treatment among high-voltage electric field treatments was the 10 min group at 15 kV/cm. The germination rate and the sprout growth of brown rice germinated by this treatment of 10 min at 15 kV/cm were increased by about 10∼20% compared to those of the control group. The treatments of electric current stimuli and high-voltage electric field accelerated the germination rate and sprout growth of brown rice by about 10∼15% compared to those of the control group.