• Title/Summary/Keyword: pulp modification

Search Result 56, Processing Time 0.024 seconds

ELECTROSURGERY IN DENTAL PRACTICE-A CASE REPORT (Electrosurgery를 이용한 치료증례)

  • Yoon, Jae-Woong;Lee, Sang-Hoon;Lee, Kwang-Soo;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.631-639
    • /
    • 1996
  • Electrosurgical technique have been used in dentistry as an aid to soft tissue management for nearly 60 years. However, it was not until the late 1960s that the principles of electrosurgery were understood and improved equipment became available. Electrosurgery is a surgical procedure performed on soft tissue utilizing controlled high frequency electricaI(radio-frequency) currents in the range of 1,500,000 to 7,500,000 cyclesper second. The radio-frequency energy used in electrosurgery is able to cut and coagulate tissue because it focuses the energy at the small, active electrode. Advantages of electrosurgery for soft-tissue management during dental procedures include improved hemostasis, ease of tissue modification, improved visibility and so on, but adverse healing responses-including necrosis of soft tissue and sequestration of alveolar bone-have been reported. The present report provides examples of treatment of soft tissue and pulp tissue of primary teeth by electrosurgery. The results are as follows; 1. Electrosurgical techniques can be used for various procedures in pedodontics. 2. Electrosurgical procedures provide improved hemostasis and visibility in the operating field, which enable to remove, reshape, and contour soft tissues easily. 3. In pulpotomy technique, it was difficult to expect the variable pulpal response based on the degree of heat accumulation and the conditions of pulp tissues. Therefore, electrosurgical pulpotomy could not be considered as a method superior to formocresol pulpotomy. 4. A greater degree of dexterity and experiences in manipulation of the electrode is required compared with the conventional scalpel surgery.

  • PDF

Epigenetics: general characteristics and implications for oral health

  • Seo, Ji-Yun;Park, Yoon-Jung;Yi, Young-Ah;Hwang, Ji-Yun;Lee, In-Bog;Cho, Byeong-Hoon;Son, Ho-Hyun;Seo, Deog-Gyu
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.14-22
    • /
    • 2015
  • Genetic information such as DNA sequences has been limited to fully explain mechanisms of gene regulation and disease process. Epigenetic mechanisms, which include DNA methylation, histone modification and non-coding RNAs, can regulate gene expression and affect progression of disease. Although studies focused on epigenetics are being actively investigated in the field of medicine and biology, epigenetics in dental research is at the early stages. However, studies on epigenetics in dentistry deserve attention because epigenetic mechanisms play important roles in gene expression during tooth development and may affect oral diseases. In addition, understanding of epigenetic alteration is important for developing new therapeutic methods. This review article aims to outline the general features of epigenetic mechanisms and describe its future implications in the field of dentistry.

Lack of EGCG Effects on Radiation-Induced Apoptosis of Mice Splenocytes (마우스 비장세포에서 방사선유도성 아포토시스에 대한 EGCG 효과의 부족)

  • Jang, Seong-Soon;Lee, Heui-Kwan
    • Radiation Oncology Journal
    • /
    • v.26 no.3
    • /
    • pp.173-180
    • /
    • 2008
  • Purpose: The modification of radiation-induced apoptosis by EGCG, known as antioxidants or oxidants, was studied in mice spleens irradiated with a lethal dose. Materials and Methods: Male C57BL/6 mice were divided into control, irradiation-only, and EGCG (100 mg/kg i.p. 1 h before irradiation) pretreatment groups. The mice were irradiated with a single whole-body dose of 7 Gy. The apoptosis in the spleens after irradiation of the lethal dose were analyzed by TUNEL assay. In addition, the expression levels of the Bax and Bcl-2 proteins were quantified using a Western blotting method. Results: The induction of apoptosis was detected in the splenic white pulp. The highest level of apoptosis was detected at 8 hours after irradiation. No significant difference was identified by the apoptotic index (53.9% vs. 52.1%, p=0.328) and relative Bax protein expression (0.86 vs. 0.81, p=0.335), between the irradiation-only and EGCG pretreatment group, respectively. However, a lower Bax/Bcl-2 ratio (1.64 vs. 0.97, p=0.037) and higher relative expression level of Bcl-2 protein (0.57 vs. 0.82, p=0.037) was measured in the EGCG pretreatment group. Conclusion: The EGCG pretreatment neither decreased the radiation-induced apoptosis in mice splenocytes, nor induced additional apoptosis.

Preparation and Application of Nanofiltration Membranes (NF막 제조 및 응용공정)

  • 이규호;오남운;제갈종건
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.135-153
    • /
    • 1998
  • Nanofiltration (NF) is a recently introduced term in membrane separation. In 1988, Eriksson was one of the first authors using the word 'nanofiltration' explicitly. Some years before, FilmTech started to use this term for their NF50 membrane which was supposed to be a very loose reverse osmosis membrane or a very tight ultrafiltration membrane. Since then, this term has been introduced to indicate a specific boundary of membrane technology in between ultrafiltration and reverse osmosis. The application fields of the NF membranes are very broad as follows: Demeneralizing water, Cleaning up contaminated groundwater, Ultrapure water production, Treatment of effleunts containing heavy metals, Offshore oil platforms, Yeast production, Pulp and paper mills, Textile production, Electroless copper plating, Cheese whey production, Cyclodextrin production, Lactose production. The earliest NF membrane was made by Cadotte et al, using piperazine and trimesoyl chloride as monomers for the formation of polyamide active layer of the composite type membrane. They coated very thin interfacially potymerized polyamide on the surface of the microporous polysulfone supports. The NF membrane exhibited low rejections for monovalent anions (chloride) and high rejections for bivalent anions (sulphate). This membrane was called NS300. Some of the earliest NF membranes, like the NF40 membrane of FilmTech, the NTR7250 of Nitto-Denko and the UTC20 and UTC60 of Toray, are formed by a comparable synthesis route as the NS300 membrane. Commercially available NF membranes nowadays are as follows: ASP35 (Advanced Membrane Technology), MPF21; MPF32 (Kiryat Weizmann), UTC20; UTC60; UTC70; UTC90 (Toray), CTA-LP; TFCS (Fluid Systems), NF45; NF70 (FilmTec), BQ01; MX07; HG01; HG19; SX01; SX10 (Osmonics), 8040-LSY-PVDI (Hydranautics), NF CA30; NF PES 10 (Hoechst), WFN0505 (Stork Friesland). The typical ones among the commercially available NF membranes are polyamide composite membrane consisting of interfacially polymerized polyamide active layer and microporous support. While showing high water fluxes and high rejections of multivalent ions and small organic molecules, these membranes have relatively low chemical stability. These membranes have low chlorine tolerance and are unstable in acid or base solution. This chemical instability is appearing to be a big obstacle for their applications. To improve the chemical stability, we have tried, in this study, to prepare chemically stable NF membranes from PVA. The ionomers and interfacially polymerized polyamide were used for the modification of'the PVA membranes. For the detail study of the active layer, homogeneous NF membranes made only from active layer materials were prepared and for the high performance, composite type NF membranes were prepared by coating the active layer materials on microporous polysulfone supports.

  • PDF

Current Research on Nanocellulose-Reinforced Nanocomposites (Nanocellulose를 이용한 나노복합재의 최근 연구 동향)

  • Cho, Mi-Jung;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.587-601
    • /
    • 2010
  • This review attempted to overview characteristics of nanocellulose from various sources, its isolation methods, and properties of nanocellulose-based nanocomposites. Currently, nanocelluloses could be obtained from a variety of cellulose sources, including wood pulp, tunicate, bacterial cellulose etc., and are isolated by various ways such as chemical, physical, or biological methods. The length and width of nanocellulose is in the range of 100~300 nm long and 5~50 nm wide although characteristics of nanocellulose shows a wide variability, depending on sources and isolation method. Nanocellulose is also being used as a reinforcement in the nanocomposites via various methods. Many water soluble polymers were reinforced by the incorporation of nanocellulose, which significantly improves tensile and storage moduli of the nanocomposites. In order to be used for hydrophobic polymers, the surface of nanocellulose was modified. Even though there is a significant progress in the utilization of nanocellulose as a reinforcement of polymers, further research is required to find a niche market of nanocellulose-reinforced nanocomposites. In addition, isolation methods of producing the nanocellulose in a large quantity for commercial applications should be developed to extend the application of nanocellulose-based bio-nanocomposites in future.

Treatment of crown-root fracture with a modified crown fragment reattachment technique (변형된 치관부 파절편 재부착술식을 이용한 치관치근파절의 치료)

  • Song, Chang-Won;Song, Min-Ju;Shin, Su-Jung;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.395-400
    • /
    • 2010
  • The development of adhesive dentistry has allowed that the crown fragment reattachment can be another option in the treatment of crown fracture. However, additional crown lengthening procedure or extrusion of the tooth may be necessary in the treatment of crown root fracture because subgingival fracture line in close proximity to the alveolar bone leads to challenges for restorative procedure and the violation of the biologic width. This case report presents a modified crown fragment reattachment technique of crown root fracture with pulp exposure, which was done without additional crown lengthening procedures. After the endodontic treatment, the patient was treated using a post insertion and the fragment reattachment technique, which made it possible to preserve the space for the biologic width and maintain a dry surgical field for adequate adhesion through the modification of the fractured coronal fragment. Since a coronal fracture was occurred and reattached afterward, it was observed that the coronal fragment was well maintained without the additional loss of periodontal attachment through 2-year follow up.