• Title/Summary/Keyword: pulp fiber

Search Result 512, Processing Time 0.019 seconds

Effect of Curling on the Characteristics of Pulp Fibers (컬화가 펄프 섬유의 특성에 미치는 영향)

  • 원종명;이재훈;한창석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • Recycling of wastepaper is very important for the environmental protection. However inferior strength and slower drainage characteristic that are brought by the hornification and the increase of fines respectively limited the increase of wastepaper recycling. The purpose of this study is to obtain some fundamental information that is helpful to develop the technologies which can improve the characteristics of recycled fibers. Softwood bleached kraft pulp was curlated with Hobart mixer at several different consistency. The curlation of fibers can cause the internal fibrillation and decreasing the crystallinity without serious damage of fiber surface. Curl index, kink index, freeness and WRV were increased, but crystallinity was decreased with the increase of curlation consistency.

  • PDF

Recycling of Wastepaper(13) -Selective Treatment of Flocculant on Fractionated OCC Fines- (고지재생연구(제13보) -부상부유의 응집처리에 의한 골판지 고지의 탈수성 및 강도 향상 방법-)

  • 여성국;류정용;신종호;송봉근;김진두
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.24-29
    • /
    • 2001
  • The base paper of corrugated board is mainly produced from Korean old corrugated container (KOCC), and thus the recycling rate of KOCC is very high. However, there is a problem that the pulp quality is very low while the recycling rate of OCC is high. The fines content in KOCC, the main source of the corrugated board, amounts to nearly the half of the total stock, and its formation increases as recycling process repeats due to the hornification of fiber. There have been attempts to improve the drainage property of OCC by increasing the headbox concentration of the paper machine or by applying drainage-promoting polymer additives. However, these conventional methods have problems of weakened paper strength and lowered converting fitness caused by paper formation hindrance. The strength of linerboard could not be increased in case KOCC is used, because hornified OCC pulp can-not be sufficiently refined due to the lowered drainage property caused by fines formation. We studied about a new technique consisting of froth-flotation for fractionating pulp stock into a long fiber portion and fines fraction. This study will be developed in order to enhance the drainage and strength properties of a recycled OCC pulp by selective treatment of flocculant on fractionated OCC Fines.

  • PDF

Improvement on Dyeability of Hanji with Natural Dyes Using a (3-chloro-2-hydroxypropyl) Trimethyl Ammonium Chloride (양이온화 처리 한지의 천연염색성)

  • Yoo, Seung-Il;Oh, Ui-Myeong;Min, Yu-Ri;Choi, Tae-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.88-97
    • /
    • 2011
  • We carried out cationization of Dak pulp (paper mulberry bast fiber pulp) which is raw material of Hanji (Traditional Korean Paper) using a (3-chloro-2-hydroxypropyl) trimethyl ammonium chloride to improve dyeability during a dyeing of Hanji with Gardenia (Gardenia jasminoides) and smoke tree (Cotinus coggygria). Fiber specific charge densities were determined using polyelectrolyte titration method and K/S values of dyed Hanji was calculated by Kubelka-Munk equation. As the result, fiber specific charge density increased with degree of cationization. Colors of Hanji dyed with Gardenia did not vary significantly with degree of cationization, but cationized Hanji dyed with smoke tree showed a large increase of a* value and reddish yellow color. After-mordanting did not decrease K/S value of dyes with cationized Hanji. K/S values of dyed Hanji decreased with increasing dyeing temperature. For smoke tree, the cationization impair lightfastness of dyed Hanji without mordant. After-mordanting with copper acetate or iron chloride improved lightfastness of dyed Hanji.

Recycling of Wastepaper(X) -Improvement of Fines Fractionation through Multi-Stage Froth-Flotation and Addition of Cationic Polyelectrolyte as a Fractionating Promoter for OCC Flotation- (고지재생연구(제10보) -골판지 고지의 미세분 분급효율 개선을 위한 다단계 부산부유 처리 및 분급 촉진제 적용-)

  • 여성국;류정용;신종호;송봉근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.4
    • /
    • pp.27-33
    • /
    • 2000
  • A new technique for fractionating pulp stock into a long fiber portion and fines fraction was developed by KRICT in order to enhance the drainage and strength properties of recycled OCC pulp. In order to investigate the effect of fines contents in stock and stages of flotation on fractionation efficiency, flotations were performed at varied fines contents and flotation stages. Based on the result of multi-stage flotation fractionation it could be said that fines smaller than 15${\mu}{\textrm}{m}$ stabilize flotation froth of OCC. Although the amounts and the fines contents of flotation reject could be increased by multi-stage flotation fractionation of OCC, flotation stages more than 3 times were found to be inefficient in terms of fines concentrating degree. In order to satisfy the both conditions of reducing long fiber loss and of increasing flotation reject, several kinds of fractionating promoters were searched and investigated. And high molecular weight cationic polyacrylamide was chosen as a long fiber flocculating and flotation froth-stabilizing agent.

  • PDF

Cell Wall Micropore Loading of Pulp Fibers (펄프 섬유의 세포벽 미세공극 충전)

  • Lee, Jong-Man;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.57-64
    • /
    • 1992
  • The unique cell wall micropores of pulp fiber can be utilized as loading site in variety of important practical application which could be the basis of new papermaking technologies. One of these includes the manufature of paper containing higher levels of in situ filler precipitated. Hardwood pulp fiber were first impregnated with the solution of sodium carbonate($Na_2CO_3$). The micropores in cell wall of pulp fibers were filled with the liquid salt solution. The second calcium nitrate($Ca(NO_3)_2$) solution formed an insoluble calcium carbonate($CaCO_3$) precipitate within the cell wall micropores by interacting with the first sodium carbonate solution. The effects of chemical concentration and dryness of pulp fibers on the retention of cell wall micropore loaded filler were investigated. The paper properties of cell wall micropore loaded pulp fibers were compared with those of conventionally loaded and lumen loaded pulp fibers. Also the presense of the fillers within the cell wall micropore was observed by SEM. Increasing the chemical concentration to generate the calcium carbonate increased the retention of filler in cell wall micropore loaded pulp fibers. The particle size distribution of precipitated calcium carbonate ranged from $0.1{\mu}m$ to $80{\mu}m$. But, the average particle size of cell wall micropore loaded calcium carbonate was $4{\mu}m$. The paper made from never dried pulp fibers, the cell wall micropores which were filled with calcium carbonate, had better mechanical and optical properties than those of conventionally loaded or lumen loaded pulp fibers.

  • PDF