• Title/Summary/Keyword: pullulan modification

Search Result 4, Processing Time 0.016 seconds

Modification of Pullulan Using Dextransucrase and Characterization of the Modified Pullulan. (덱스트란수크라제를 이용한 플루란의 변형 및 특성조사)

  • ;;;;;;John F. Robyt
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.264-268
    • /
    • 1998
  • Many enzymes catalyze a primary reaction and/or secondary reaction. Dextransucrase usually synthesizes dextran from sucrose as a primary reaction. The secondary reaction of dextransucrase is the transfer of glucose from sucrose to carbohydrate accepters. We have reacted dextransucrase from Leuconostoc mesenteroides B-742CB with sucrose and pullulan as an acceptor under different reaction conditions; various concentrations of pullulan, enzyme, sucrose and different pHs and temperatures of reaction digests. The yield of modified pullulan was 57%(<${\pm}$5%) of theoretical under the reaction condition of pH 5.2, temperature 28$^{\circ}C$, 0.37% of pullulan, and 0.l U/$m\ell$ of dextransucrase. Modified products were more resistant against the hydrolysis of pullulanase and endo-dextranase than those of native pullulan. The positions of glucose substitution in the modified products were determined by methylation followed by acid hydrolysis and analyzed by TLC. The products were modified by the addition of glucose to the position of C3, C4, C6 free hydroxyl group of glucose residues in the pullulan.

  • PDF

Microbial Modification of Extracellular Polysaccharides

  • Jin Woo Lee
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.69-80
    • /
    • 1999
  • Some trials to alter the structure of extracellular polysaccharides by means of biotransformation and microbial modification have been reported. Seaweed alginate was acetylated by intact and resting cells of Pseudomonas syringae ATCC 19304. Glucose analogs such as 3-O-methyl-D-glucose used as sole carbon sources was directly incorporated into curdlan by agrobacterium sp. ATCC 31749. The 2-amino-2-deoxy-D-glucose (glucosamine)and 2-acetamido-2-deoxy-D-glucose (N-acetylglucosamine) were incorporated into microbial cellulose by Acetobacter xylinum ATCC 10245. The changed monomeric composition in pullulan by Aureobasidium pullulans ATCC 42023 as well as zooglan by Zoogoea ramigera ATCC 25935 was another effect of glucose analogs used a carbon source. There was no effect of glucose analogs found in polysacharide-7 (PS-7) produced by Beijerinckia indica. ATCC 21423.

  • PDF

Purification, Characterization and Chemical Modification of the Xylanase from Alkali-tolerant Bacillus sp. YA-14

  • Park, Young-Seo;Yum, Do-Young;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • The xylanase from alkali-tolerant Bacillus sp. YA-14 was purified to homogeneity by CM-cellulose, Sephadex G-50, and hydroxyapatite column chromatographies. The molecular weight of the purified enzyme was estimated to be 20, 000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme slightly hydrolyzed carboxymethyl cellulose and Avicel, but did not hydrolyze soluble starch, dextran, pullulan, and ${\rho}-nitrophenyl-{\beta}$-D-xylopyranoside. The maximum degree of hydrolysis by enzyme for birchwood xylan and oat spelts xylan were 47 and 40%, respectively. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.03 mg/ml and 5.0 mg/ml, respectively. The activity of the xylanase was inhibited reversibly by $HgCl_2$, and showed competitive inhibition by N-bromosuccinimide, which probably indicates the involvement of tryptophan residue in the active center of the enzyme. The Xylanase was identified to be xylose-producing endo-type xylanase and did not show the enzymatic activities which cleave the branch point of the xylan structure.

  • PDF

Cloning and Characterization of Glycogen-Debranching Enzyme from Hyperthermophilic Archaeon Sulfolobus shibatae

  • Van, Trinh Thi Kim;Ryu, Soo-In;Lee, Kyung-Ju;Kim, Eun-Ju;Lee, Soo-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.792-799
    • /
    • 2007
  • A gene encoding a putative glycogen-debranching enzyme in Sulfolobus shibatae(abbreviated as SSGDE) was cloned and expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity by heat treatment and Ni-NTA affinity chromatography. The recombinant SSGDE was extremely thermostable, with an optimal temperature at $85^{\circ}C$. The enzyme had an optimum pH of 5.5 and was highly stable from pH 4.5 to 6.5. The substrate specificity of SSGDE suggested that it possesses characteristics of both amylo-1,6-glucosidase and $\alpha$-1,4-glucanotransferase. SSGDE clearly hydrolyzed pullulan to maltotriose, and $6-O-\alpha-maltosyl-\beta-cyclodextrin(G2-\beta-CD)$ to maltose and $\beta$-cyclodextrin. At the same time, SSGDE transferred maltooligosyl residues to the maltooligosaccharides employed, and maltosyl residues to $G2-\beta-CD$. The enzyme preferentially hydrolyzed amylopectin, followed in a decreasing order by glycogen, pullulan, and amylose. Therefore, the present results suggest that the glycogen-debranching enzyme from S. shibatae may have industrial application for the efficient debranching and modification of starch to dextrins at a high temperature.