• 제목/요약/키워드: pullulan modification

검색결과 4건 처리시간 0.022초

덱스트란수크라제를 이용한 플루란의 변형 및 특성조사 (Modification of Pullulan Using Dextransucrase and Characterization of the Modified Pullulan.)

  • 이진하;김도만;류화자;허수진;전덕영;한남수
    • 한국미생물·생명공학회지
    • /
    • 제26권3호
    • /
    • pp.264-268
    • /
    • 1998
  • 덱스트란수크라제는 Sucrose를 이용하여 덱스트란의 합성을 촉진하는데 sucrose이외에 다른 탄수화물이 효소 반응기 중에 존재하는 경우에는 Sucrose의 glucose를 이 탄수화물에 전달하는 반응을 촉진하여 새로운 구조의 산물을 생산한다. Leuconostoc mesenteroides B-742CB로 부터 얻은 덱스트란수크라제를 이용하여 플루란을 변형하고 그 조건을 최적화 하고자 했다. 수용성 변형 플루란은 이론적 수율의 57%(<$\pm$5)를 얻었다. 플루란 변형의 최적 조건으로는 pH 5.2, 28$^{\circ}C$ 에서 기질 0.37%(w/v)와 반응한 효소의 농도와 Sucrose농도가 각각 0.1 U/$m\ell$과 48mM일 때였다. 변형 플루란을 pullulanase, endodextranase로 처리하여 변형 전의 플루란과가수분해 상태를 비교 분석한 결과 변형전의 산물에 비해 이들 가수 분해 효소에 대해 더 저항성을 보였다. 변형 플루란을 methylation과 산가수분해 후 TLC한 결과 sucrose의 glucose가 플루란 glucose의 C3, C4, C6 위치의 free-OH group에 수식된 새로운 구조의 변형 플루란임을 확인하였다.

  • PDF

Microbial Modification of Extracellular Polysaccharides

  • Jin Woo Lee
    • Journal of Life Science
    • /
    • 제9권1호
    • /
    • pp.69-80
    • /
    • 1999
  • Some trials to alter the structure of extracellular polysaccharides by means of biotransformation and microbial modification have been reported. Seaweed alginate was acetylated by intact and resting cells of Pseudomonas syringae ATCC 19304. Glucose analogs such as 3-O-methyl-D-glucose used as sole carbon sources was directly incorporated into curdlan by agrobacterium sp. ATCC 31749. The 2-amino-2-deoxy-D-glucose (glucosamine)and 2-acetamido-2-deoxy-D-glucose (N-acetylglucosamine) were incorporated into microbial cellulose by Acetobacter xylinum ATCC 10245. The changed monomeric composition in pullulan by Aureobasidium pullulans ATCC 42023 as well as zooglan by Zoogoea ramigera ATCC 25935 was another effect of glucose analogs used a carbon source. There was no effect of glucose analogs found in polysacharide-7 (PS-7) produced by Beijerinckia indica. ATCC 21423.

  • PDF

Purification, Characterization and Chemical Modification of the Xylanase from Alkali-tolerant Bacillus sp. YA-14

  • Park, Young-Seo;Yum, Do-Young;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권1호
    • /
    • pp.41-48
    • /
    • 1994
  • The xylanase from alkali-tolerant Bacillus sp. YA-14 was purified to homogeneity by CM-cellulose, Sephadex G-50, and hydroxyapatite column chromatographies. The molecular weight of the purified enzyme was estimated to be 20, 000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme slightly hydrolyzed carboxymethyl cellulose and Avicel, but did not hydrolyze soluble starch, dextran, pullulan, and ${\rho}-nitrophenyl-{\beta}$-D-xylopyranoside. The maximum degree of hydrolysis by enzyme for birchwood xylan and oat spelts xylan were 47 and 40%, respectively. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.03 mg/ml and 5.0 mg/ml, respectively. The activity of the xylanase was inhibited reversibly by $HgCl_2$, and showed competitive inhibition by N-bromosuccinimide, which probably indicates the involvement of tryptophan residue in the active center of the enzyme. The Xylanase was identified to be xylose-producing endo-type xylanase and did not show the enzymatic activities which cleave the branch point of the xylan structure.

  • PDF

Cloning and Characterization of Glycogen-Debranching Enzyme from Hyperthermophilic Archaeon Sulfolobus shibatae

  • Van, Trinh Thi Kim;Ryu, Soo-In;Lee, Kyung-Ju;Kim, Eun-Ju;Lee, Soo-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.792-799
    • /
    • 2007
  • A gene encoding a putative glycogen-debranching enzyme in Sulfolobus shibatae(abbreviated as SSGDE) was cloned and expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity by heat treatment and Ni-NTA affinity chromatography. The recombinant SSGDE was extremely thermostable, with an optimal temperature at $85^{\circ}C$. The enzyme had an optimum pH of 5.5 and was highly stable from pH 4.5 to 6.5. The substrate specificity of SSGDE suggested that it possesses characteristics of both amylo-1,6-glucosidase and $\alpha$-1,4-glucanotransferase. SSGDE clearly hydrolyzed pullulan to maltotriose, and $6-O-\alpha-maltosyl-\beta-cyclodextrin(G2-\beta-CD)$ to maltose and $\beta$-cyclodextrin. At the same time, SSGDE transferred maltooligosyl residues to the maltooligosaccharides employed, and maltosyl residues to $G2-\beta-CD$. The enzyme preferentially hydrolyzed amylopectin, followed in a decreasing order by glycogen, pullulan, and amylose. Therefore, the present results suggest that the glycogen-debranching enzyme from S. shibatae may have industrial application for the efficient debranching and modification of starch to dextrins at a high temperature.