• Title/Summary/Keyword: pull-out force

Search Result 121, Processing Time 0.021 seconds

A Study on External Effects on Peeling-off Behavior of Adhesive Tape (접착 테이프 박리거동에 미치는 외부효과에 관한 연구)

  • Han, Won Heum;Jung, Hyung Sik;Lee, Moon Ho
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • In order to describe external effects on the behavior of the adhesive tape, the semi-rigid body cylinder chain model for adhesive tape has been proposed as follows. Firstly the behavior of the tape is in detail investigated while it's being pulled off from the plate, and subsequently a relevant phenomenological model is designed. Then all the contributors affecting the force to peel out the tape from plate (hereafter, the pull out force) are clearly defined and their sensitivity analyses are made to set up the experimental reference condition, under which the angular dependence of the pull out force is measured in every $10^{\circ}$. The experimental data turn out to be in good agreement with the theoretical ones by our model within the measurement error, and the effects due to other factors are proved to be well explained from the phenomenological viewpoint. From these results, the concept of this study might be expected to be very useful for the test and evaluation of PSA types of adhesive tape.

Influence of varying cement types and abutment heights on pull-off force of zirconia restorations (시멘트의 종류 및 임플란트 지대주 높이가 지르코니아 수복물의 제거력에 미치는 영향)

  • Yeong-Jun Jung;Yu-Lee Kim;Ji-Hye Jung;Nae-Un Kang;Hyun-Jun Kong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.64-71
    • /
    • 2024
  • Purpose: The purpose of this study is to evaluate Ti-base abutment's three different heights and three different cement types on the pull-off force of zirconia-based restorations. Materials and Methods: A total of 90 fixture lab analogs were embedded in auto polymerizing resin bloack. 90 Ti-base abutments heights of 3 mm, 5 mm, 7 mm were scanned and zirconia restoration were prepared from scanned files. Zirconia restoration were cemented with three different types of cements (temporary, semi-permanent, permanent) following manufacturer's instructions. All 90 specimens were placed and tested in a universal testing machine for pull-out testing. Retention was measured by recording the force at load drop. Statistical analysis was performed using Kruskal-Wallis test for detecting whether there are any statistical significance along cement types or abutment heights. After that, Mann-Whitney test was used for figuring out differences regarding abutment height and the comparison between 3 cements. Results: Temp bond showed significantly lower pull-off force compared to Fujicem regardless of any abutment height. However, there were significant differences between Cem-implant and Fujicem in abutment height of 3 mm and 7 mm, but there was no significant difference in 5 mm. Temp bond and Cem-implant had significant differences only in abutment height of 5 mm. Conclusion: Although Ti-base abutment height did not influenced zirconia restorations' retentiveness, cement types showed significant differences.

An Experimental Study on the Application of End-Expanded Soil Nailing Method (선단확장식 소일네일링 공법의 적용성에 관한 실험적 연구)

  • Lee, Sang-Eun;Jang, Yun-Ho;Moon, Chang-Yeul;Jeong, Gyo-Cheol;Park, Young-Sun
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 2007
  • The peculiarity of end-expanded soil nailing method(EESNM) is in fixing the wedge-type steel body spreaded by collars and grouting its surroundings by cement milk within soils, after extending hole bottom over drilling hole diameter with top drill bit. The present study was done to establish the effect of this method. Laboratory model test were carried out to investigate the behavior characteristics with the performance of the pull-out test and failure experiment, after preparing soil test box having 1,300mm length, width 1,000mm, and height 1,100mm, and the same experimental condition was set up to compare with the general soil nailing method(GSNM). The pull-out force of about 23 percentage was increased, and the horizontal displacements 1.2 from 9.1 percentage in soil-nailed wall decreased in EESNM compare with GSNM. The axial force acting on nail increased considerably at load level over 7 ton in EESNM and 5 ton in GSNM. The predicted failure line from the maxima analyzed by axial tensile strain located at long distance from soil-nailed wall in EESNM. The EESNM demonstrated the superiority of reinforcement effect in comparison with GSNM from the results above mentioned.

A design of hybrid type linear motor and measurement of the thrust force characteristics (Hybrid type linear motor의 설계와 추력특성시험)

  • Kim, Moon-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2147-2153
    • /
    • 2009
  • A Hybrid type Linear Pulse Motor(LPM) for low cost is designed as single side stator structure. The static and dynamic characteristics measurement systems are designed. Experimental measurement systems, which measure the static and dynamic characteristic of the LPM, are uggested for the prototype LPM. It becomes known the values of the thrust forces. Finally the microstep drive method is adopted to the drive of prototype LPM. The waveform difference is measured between the microstep method and rectangular wave. From the experimental results, it can be confirmed that the repetitive ripple of the thrust force of the prototype LPM are reduced by taking the microstep drive method.

Design of Pull Box Members on the Landing Pier Using Finite Element Analysis of a Steel Plate (강재 플레이트 유한요소해석을 이용한 잔교 상부의 풀 박스 부재의 선정)

  • Kim, Sungwon;Hong, Hyemin;Han, Taek Hee;Seo, Seung Nam
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.111-118
    • /
    • 2017
  • In this study, pull box members were designed by finite element analysis of a steel plate covering a pull box to secure its safety on the landing pier dedicated to the large research survey ship. It was assumed that the maximum load is due to the 250 tonf class crane used for unloading work when the working environment in the upper part of the landing pier was considered. The safety of the pull box was evaluated by the comparison between the yield strength of the steel plate and the result of stress analysis on the steel plate due to the crane load. It was found that the stress at the plate from the crane load exceeded the yield strength of the steel(205MPa) when the upper part of the pull box was protected by a $1950{\times}1950mm$ steel plate cover. In order to compensate for this, a concrete filled steel tube(CFT) column with a diameter of 150 mm and a steel thickness of 10 mm was reinforced at the center of the plate, and the finite element analysis was carried out. However, the maximum stress at the steel plate was higher than the yield strength of the steel in some load cases so that it was tried to find appropriate thickness of the steel plate and diameter of the CFT columns. Finally, the analysis results showed that the safety of the pull box was secured when the thickness of the steel plate and the diameter of the CFT column were increased to 30mm and 180mm, respectively.

Prediction of Pullout Behavior Characteristics on the Geogrid (지오그리드 보강재의 인발거동특성 예측기법)

  • 김홍택;박사원;김경모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.1-10
    • /
    • 1999
  • In the present study, laboratory pull-out tests with various geogrid shapes are carried out to investigate behavior characteristics of the geogrid. Also, an interface pullout formula is proposed for predicting and interpreting pullout test result. The analytical model is based on the assumption that the reinforcement is linear elastic during the pullout test. And then, maximum pullout force, frictional resistance and active length for each of the grid density ratio are predicted based on the interface pullout formula. The predicted results were compared with those of pullout tests, and showed in general good agreements.

  • PDF

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.

Field Pullout Tests and Stability Evaluation of the Pretension Soil Nailing System (프리텐션 쏘일네일링 시스템의 현장인발시험 및 안정성 평가)

  • Kim, Hong-Taek;Choi, Young-Geun;Park, Si-Sam;Kim, Berm-Suk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.27-40
    • /
    • 2003
  • In the present study, a newly modified soil nailing technology named as the PSN(Pretension Soil Nailing) system is proposed. Effects of various factors related to the design of the pretension soil nailing system, such as the length of a sheathing pipe and the fixed cone, are examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests are performed in the present study and the pretension forces are also evaluated based on the measurements. In addition, both short-term and long-term characteristics of pull-out deformations of the newly proposed PSN system are analyzed and compared with those of the general soil nailing system by carrying out the stress-controlled field pull-out tests. A numerical approach is further made to determine a postulated failure surface as well as a minimum safety factors of the proposed PSN system using the shear strength reduction technique and the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system are analyzed throughout comparisons with the results expected in case of the general soil nailing system. An efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

Soil-Reinforcement Interaction Determined by Extension Test (인장시험(引張試驗)에 의한 보강토(補强土)의 거동결정(擧動決定))

  • Kim, Oon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • The new technique has been used to determine the soil-reinforcement interaction. The testing apparatus is essentially a triaxial cell fitted with the capability to house a hollow cylinderical sample. A hollow cylinderical sand specimen with a concentrical layer of reinfarcing material sandwitched in the middle is used in this investigation. The reinforcement is fastened at the base. The hollow specimen can be viewed as a "unit sheet" of a soil-reinforcement composite system of infinite horizontal extent. Axial load as well as inner and outer chamber pressures can be applied to perform a test. The specimen is first subjected to an isotropic stress state corresponding to the overburden pressure. Next, an extension test by reducing the axial load is carried out. The specimen is "loaded" to failure by either the breakage of reinforcing material (tensile failure) or slippage which takes place at the soil-reinforcement interface (i.e. the overcoming of the bonding capacity). Since the reinforcement is fastened at its lower end to the base, any tendency of relative movement between the reinforcement and the sand during an extension test can induce tensile force in the reinforcement thus forming a "reversed pull-out" test condition. Preliminary test results have demonstrated positively of the new approach to test the soil-reinforcement interaction. Reinforcing elements of different extensibility were used to study the deformbility of reinforced soil. Furthermore, both the breakage and the pull-out modes of failure were observed.

  • PDF