• Title/Summary/Keyword: pull-out force

Search Result 120, Processing Time 0.023 seconds

Analysis on Behavior of Mechanical Bulb (GangWhaGu) Applied to Slope Reinforcement (비탈면 보강에 적용된 네일강화구 거동 분석)

  • Jung, Soonkook;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.55-62
    • /
    • 2016
  • The frequency slope over a year due to climate collapse is connected with huge casualties and property damage, but the situation rarely reduce the damage that gradually increases in size. In order to suppress this, engineers are improved better reinforcement and continued efforts to improve the shear force or withdrawal force. In this study, the GangWhaGu attached to the nail tip that improves the soil nail pullout resistance, and a method to increase the nail integral GangWhaGu maximize the contact area soil - by increasing the friction of the grout seems to increase the effect of slope stability. In order to validate the experiment to determine the effect of reinforcing the soil nail pullout tests of indoor and Behavior GangWhaGu nail and through field tests were conducted and applicability. Experimental results, the case of a pull-out test compared to the GangWhaGu nail through the tensile force of the nail were to increase by approximately 20%.

Proposal of a New Experimental Method for Evaluating the Stability of Armor Blocks (소파블록의 안정성 평가에 대한 새로운 실험방법 제안)

  • Kim, Shinwoong;Lee, Seong-Dae;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.131-138
    • /
    • 2021
  • The armor blocks are used to protect the body of the structure and dissipate wave energies, so it is crucial to evaluate the stability of the armor unit. The stability of armor blocks has been mainly evaluated through empirical coefficients called the stability coefficient obtained from hydraulic model experiments. In this study, a new type of single-layered armor block called K-Block was proposed, and a new experimental method based on the pull-out force was proposed to evaluate the stability of the armor unit, including the interlocking effects. The pull-out force test proposed in this study directly measures the force required to separate the armor unit from the armored layer on the slope by applying a tensile force in the vertical and horizontal directions to the installed armor unit. The proposed experimental method confirmed that the interlocking effects of the armor block could be quantitatively evaluated, and the high stability of the K-Block was verified.

Effect of Temperature on the Micro-scale Adhesion Behavior of Thermoplastic Polymer Film (열가소성 폴리머 필름의 마이크로 점착 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Heo, Jung-Chul;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.86-95
    • /
    • 2009
  • Adhesion tests were carried out in order to investigate the effect of temperature on the adhesion behavior between a PMMA film and a fused silica lens in the micro scale. For the tests, a microtribometer system was specially designed and constructed. The pull-off forces on the PMMA film were measured under atmospheric condition as the temperature of the PMMA film was increased from 300 K to 443 K and decreased to 300 K. The contact area between the PMMA film and the lens was observed during the test. The adhesion behavior was changed with the change of the PMMA surface state as the temperature increased. In glassy state below 363 K, the pull-off force did not change with the increase of temperature. In rubbery state from 383 K to 413 K, the pull-off force increased greatly as the temperature increased. In addition, the area of contact was enlarged. In viscous state above 423 K, the fingering instability was observed in the area of contact when the PMMA film contacted with the lens. It was also found that the adhesion behavior can be varied with the thermal history of the PMMA film. The residual solvent in the PMMA film could emerge to the PMMA surface due to the heating and reduced the pull-off force.

Assessment of push-pull forces of yarn-carrying carts at some fiber-twisting factories (일부 섬유제품제조업의 밀기-당기기 작업 평가)

  • Lee, Sang-Man;Kim, Sung-Whan;Kim, Seung-Gon;Lee, Chae-Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.4
    • /
    • pp.209-214
    • /
    • 2011
  • Objectives: To assess the risk of pushing or pulling the yarn-carrying cart, the survey was performed in some fiber manufacturing factories. Methods: We selected 6 fiber-twisting factories which agreed to in-site survey of their workplace. To measure both initial and sustained forces of the push-pull tasks, Chatillon CSD500 dynamometer(2004, Ametek, USA) was used. The mean of 3 tests for the same cart was adopted as the measured forces. Height and width of cart, weight of spooled yarns, and distance of movement were also measured. Inspection of cart wheel, moving path, and the actual hand position while moving was done. Results: More than one pushing or pulling task exceeded the push-pull force limits of design goal in 5 factories. Though the cart was not loaded the heaviest weight in the factory, the measured push or pull force exceeded the limits several times. A few cart wheels were worn out and tangled with pieces of yarn. It was also observed some holes in the moving path. Conclusions: While the push-pull task is not included in the 11 scopes of over-burdened work notified by Korean government, it should be recognized as risk factor of work-related musculoskeletal disorders. The maintenance work such as regular change and frequent cleaning of cart wheel, the use of fitting wheel, and flattening of bumpy floor through the moving path should be advised importantly in the worksite management of work-related musculoskeletal disorders.

The Effect of Temperature on the Nano-scale Adhesion and Friction Behaviors of Thermoplastic Polymer Films (열가소성 폴리머 필름의 나노 응착 및 마찰 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Ando, Yasuhisa;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.288-297
    • /
    • 2007
  • Adhesion and friction tests were carried out in order to investigate the effect of temperature on the tribological characteristics of poly (methylmethacrylate) (PMMA) film using AFM. The pull-off and friction forces on the PMMA film were measured under a high vacuum condition (below $1{\times}10^{-4}$ Pa) as the temperature of the PMMA film was increased from 300 K to 420 K (heating) and decreased to 300K (cooling). Friction tests were also conducted in both high vacuum and air conditions at room temperature. When the temperature was 420 K, which is 25 K higher than the glass transition temperature $(T_g)$ of PMMA, the PMMA film surface became deformable. Subsequently, the pull-off force was proportional to the maximum applied load during the pull-off force measurement. In contrast, when the temperature was under 395 K, the pull-off force showed no correlation to the maximum applied load. The friction force began to increase when the temperature rose above 370 K, which is 25 K lower than the $T_g$ of PMMA, and rapidly increased at 420 K. Decrease of the PMMA film stiffness and plastic deformation of the PMMA film were observed at 420 K in force-displacement curves. After the heating to 420 K, the fiction coefficient was measured under the air condition at room temperature and was found to be lower than that measured before the heating. Additionally, the RMS roughness increased as a result of the heating.

Effects of Ar+ ion Beam Irradiation on the Adhesion Forces between Carbon fibers and Thermosetting Resins (Ar+ 이온 빔 조사가 탄소섬유와 열경화성 수지 간 계면결합력에 미치는 영향)

  • 박수진;서민강;김학용;이경엽
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.718-727
    • /
    • 2002
  • In this work, an Ar+ beam was irradiated on carbon fiber surfaces to improve the interfacial shear strength (IFSS) of the resulting composites using an ion assisted reaction (IAR) method h single fiber pull-out test was executed to investigate the basic characteristics of the single Carbon fiber/matrix interface. Based on Greszczuk's geometrical model, the debonding force for pull-out of the fiber from the resins was discussed with the applied ion beam energy as a result, it was known that an ion beam treatment produced the functional groups on fiber surface and etching lines along the fiber axis direction, resulting in increasing the adhesion forces between fibers and matrix, which caused the improvement of the IFSS in a composite system. And, it was also found that the maximum IFSS was shown at 0.8 keV ion beam energy in this system.

Effects of Reinforcement of Steel Fibers on the Crack Propagation of Fissured Clays (균열점토의 균열진행에 대한 강섬유의 보강효과)

  • 유한규
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.119-134
    • /
    • 1994
  • In order to assess the possibility of using steel fibers in the fissured ciays, uniaxial compression tests were performed on both unreinforced and reinforced clay samples containing a pre-existing crack. Test results showed that the steel fiber reinforcement increased resistance to cracks initiation and their propagation, and therefore increased both stress at crack growth initiation and peak stress at failure. The increase in resistance to cracks initiation and their propagation was related to the arresting or deflecting the crack propagation in clay samples by steel fibers. A theoretical interpretation of experimental results was made using fracture mechanics theory and pull-out mechanisms in fiber reinforced materials. It was revealed that the steel fibers had bridging effect through their pull-out action that caused an increased resistance to the propagation of the cracks in the samples. The predicted pull-out force based on theoretical analyses agreed reasonably well with the measured values obtained from pull-out tests.

  • PDF

A Newly Designed Miniplate Staple for High Tibial Osteotomy (근위골절술을 위한 Staple 설계)

  • Mun, Mu-Seong;Bae, Dae-Kyung
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.19-22
    • /
    • 1995
  • A biomechanical study was made to demonstrate the superior mechanical performance of the newly designed Miniplate staple to the conventional Coventry staple in high tibial osteotomy(HTO). Using twenty fresh porcine tibiae, the fixational strengh of the two different types of staple in HTO was compared. To minimize the error due to the specimen-to-specimen individuality, the bone mineral density of the tibiae was measured with a bone densitometry (Dual photon absorptionometer, Luner, USA) and those with $0.8\;{\sim}\;1.2\;gm/cm^2$ at the proximal tibia was used in the biomechanical test. Testing was performed on a material testing system (Autogram ET-5, Shimatzu, Japan) with aid of a commercial data processor (IBM 80386/ ASYST). Using two differant loading modes, 'pull-out' and 'push-out', the maximum resistant force required to release the staple from the substrate bone was recorded. In the pull-out test, ten non-osteotomized specimens were used and the staple was pullout by subjecting an axial tension on the head of the staple inserted. While in the pull-out test where ten tibiae osteotomized in the usual way of HTO were used, the staple was not directly loaded. In this testing, as a mimic condition of the natural knee, the distal part of the specimen tibia was pushed horizontally in order for the staple to be pulled out while the proximal tibia was fixed. The pull-out strength of Coventry staple and miniplate staple were found to be $27.88\;{\pm}\;5.12\;kgf$ and $182.47\;{\pm}\;32.75\;kgf$, respectively. The push-out strength of Coventry staple and miniplate staple were $18.40\;{\pm}\;4.47\;kgf$ and $119.95\;{\pm}\;19.06\;kgf$, respectively. The result revealed that miniplate staple had the pull-out/ push-out strength at least fivetimes higher than Coventry staple. Based on the measured data, it was believed that the newly designed miniplate staple could provide much better postoperative fixation in HTO. The postoerative application of long leg casting may not be needed after HTO surgery.

  • PDF

An analysis of the Behaviour of Uplift-Resisting Ground Anchors from Pull-out Tests (현장시험을 통한 부력앵커의 거동분석)

  • Lee, Cheolju;Jun, Sanghyun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • Engineering behaviour of uplift-resisting ground anchors constructed in weathered rocks has been investigated by carrying out a series of full scale pull-out tests. The anchor was to resist uplift forces (buoyancy) associated with high groundwater table acting on the basement of a rail way station. The study has included the ultimate pull-out capacity of the anchors and shear stress transfer mechanism at the anchor-ground interface. The pull-out tests were conducted by changing bonded lengths of the anchor (2~7 m) and diameter of drilled borehole (108~165 mm) to investigate their effects on the behaviour of the anchor. The measured results showed that the ultimate capacity of the anchors was increased with an increase in the bonded length, diameter of drilled borehole as expected. The ultimate capacity of the anchors deduced from the pull-out tests ranged from 392 to 1,569 kN, depending on the above-mentioned factors. This corresponds to the interface shear strength of about 227~505 kPa. Interface shear stresses deduced from the pull-out test showed that the larger the pull-out force, the larger the mobilisation of the interface shear strength. The failure mode of the anchors heavily depended on the bonded lengths of the anchors. When the bonded length was short (2~3 m), a cone-type failure was observed, whereas when the bonded length increased (5~7 m), failure developed at the grout-ground interface.

  • PDF

Evaluation of the Pull-out Resistance of the SMA Wire Connector (SMA 와이어를 이용한 연결재의 인발저항성능 평가)

  • Jung, Chi-Young;Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.130-137
    • /
    • 2019
  • Precast concrete (PC) structure is one of the type of the structures which is made in a facility prior to installing it to a construction field. The contact surfaces between two PC structures should be treated for obtaining enough binding force by inducing prestressing force. However, in the many cases, the contact surface causes the crack and leakage of water. These cracks and water leakage can cause the corrosion of the rebar, and the corrosion of the rebar can severely reduce the long-term durability. In this study, the SMA wire connector is suggested to solve the problem with the contact surfaces between two PC structures. The pull-out resistance of the suggested SMA wire connector is evaluated by conducting the tests to find the effect of the number of wires, shape of connector part, and shape memory effect. As a result of this study, the empirical formula is suggested to estimate the pull-out resistance related with the effects of the shape of the connector, shape memory effect, and the adhesive force. The validity between the estimated pull-out resistance and the measured value is confirmed.