• Title/Summary/Keyword: pull-off test

Search Result 71, Processing Time 0.029 seconds

Bond Properties of Polymer Cement Mortar to Reinforced Steel Bar (폴리머 시멘트 몰탈의 철근 부착특성 평가)

  • Park, Dong-Cheon;Cho, Gyu-hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.106-107
    • /
    • 2013
  • The purpose of this study is to characterize the bonding properties between reinforced bar and re-emulsion polymer cement mortar through the pull off test. The properties of polymer cement mortar before and after hardening were measured. Spiral reinforced steel bar was used to control the brittleness fracture of test specimens. In addition polymer content as experimental factors, the types of reinforced bar and corrosion were considered as well. Non linear FEM analysis was carried out to expect the behavior of bonding interface under the certain load.

  • PDF

A Study on External Effects on Peeling-off Behavior of Adhesive Tape (접착 테이프 박리거동에 미치는 외부효과에 관한 연구)

  • Han, Won Heum;Jung, Hyung Sik;Lee, Moon Ho
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • In order to describe external effects on the behavior of the adhesive tape, the semi-rigid body cylinder chain model for adhesive tape has been proposed as follows. Firstly the behavior of the tape is in detail investigated while it's being pulled off from the plate, and subsequently a relevant phenomenological model is designed. Then all the contributors affecting the force to peel out the tape from plate (hereafter, the pull out force) are clearly defined and their sensitivity analyses are made to set up the experimental reference condition, under which the angular dependence of the pull out force is measured in every $10^{\circ}$. The experimental data turn out to be in good agreement with the theoretical ones by our model within the measurement error, and the effects due to other factors are proved to be well explained from the phenomenological viewpoint. From these results, the concept of this study might be expected to be very useful for the test and evaluation of PSA types of adhesive tape.

Freezing-Thawing Resistance of Fiber Reinforced Polymers in Strengthening RC Members (구조보강용 FRP 복합체의 동결용해 저항성 평가 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.182-189
    • /
    • 2010
  • The strengthening performance of FRPs(Fiber Reinforced Polymers) is directly affected by the environmental conditions such as freezing-thawing and moisture because FRPs are usually bonded on the concrete surface. It is, therefore, strongly required to evaluate a durability of bond between FRPs and concrete as well as FRP materials itself. The freezing-thawing resistance of FRPs is evaluated in this study with the variables of freezing-thawing conditions, types of FRP and freezing-thawing cycles. From the test results, it is found that tensile strength and pull-off strength of CFRP are not affected by the freezing-thawing. On the other hands, those of GFRP show a little degradation because of continuous water immersion during thawing process. But, cautions are needed on the bond durability between FRPs and concrete in case of continuous water supplying from adjacent to the concrete.

Tensile Bond Characteristics between Underwater Coating Materials and Concrete Substrate (수중코팅제와 콘크리트 모재 간의 인장 부착 특성)

  • Kim, Min Ook;Jeong, Yeonung;Kang, Sung-Hoon;Moon, Juhyuk;Yi, Jin-Hak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.298-305
    • /
    • 2018
  • In this study, we investigated the tensile bond characteristics of underwater coating materials, in order to obtain useful information in support of repair work for marine and coastal concrete structures. Test variables included type of underwater coating, surface conditions of the concrete substrate, and environmental conditions. Pull-off tensile bond strength was measured at 24 h after applying underwater coatings to concrete substrates, in compliance with the procedures specified in ASTM C1583. Failure modes (coating, interface, and parent concrete) for each coating were identified through visual inspection, and comparisons were made based on measured bond strength. The tensile bond strength decreased underwater compared to that under dry conditions, while no significant effect of surface roughness on the measured bond strength was observed in underwater tests. Key aspects that need to be considered regarding selection and use of underwater coating materials for marine and coastal concrete structures were discussed.

A Study on the Basic Development Length of GFRP Rebar With Ribs (이형 GFRP 보강근의 기본정착길이에 대한 연구)

  • Moon, Do Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.485-493
    • /
    • 2010
  • GFRP rebar with ribs resemble those of deformed steel rebar was developed in 2005. It was reported that ribs of the GFRP rebar were sheared off due to the lower shear strength of polymer. In this study, the basic development length of the GFRP rebar was investigated through pull-out tests, models specified in ACI440.1R-03 and -06, and empirical model derived by Cosenza et al. (2002). As a results of pull-out tests, the critical embeddment length, which is defined as the length when failure mode is changed from pull-out to bar fracture, was 20 times of bar diameter for GFRP rebar and was 15 times for steel rebar. It is believed that the basic development of the GFRP rebar is 21 times of bar diameter, which is determined from the application of average bond strength into the model equation specified in ACI440.1R-03. Compared to the model equation in ACI440.1R-06, that in ACI440.1R-03 is recommendable for design purpose. The Cosenza et al.'s model underestimates the basic development length of the GFRP rebar.

Evaluation of Bond Performance for AC overlay on PCC Pavement (AC / PCC 복합포장 경계면 재료의 부착 성능 평가)

  • Kim, Dong kyu;Hwang, Hyun sik;Christopher, Jabonero;Ryu, Sung woo;Cho, Yoon ho
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • PURPOSES : This study focuses on the evaluation of interface performance with varying surface texture and tack coat application in an asphalt overlay. METHODS : The evaluation is carried out in two phases: tracking test and interface bond strength test. Using an image processing tool, tracking test is conducted to evaluate the susceptibility of the tack coat material to produce excessive tracking during application. Using the pull-off test method, the bond strength test is performed to determine the ability of the interface layer to resist failure. RESULTS : Results show that the underseal application yields less tracking compared to other applications. However, the bond strength is barely within the minimum acceptable value. On the other hand, RSC-4 produces higher bond strength for all surface types, but the drying time is long, which produces excessive tracking. CONCLUSIONS : While underseal application may be suitable for a trackless condition, the bond strength is less appealing compared to the rest of the tack applications available. RSC-4 demonstrated a high and consistent bond strength performance, but more time is required for drying to avoid excessive tracking. Tack coat application and surface type combination produce varying results. Therefore, these should be considered when selecting suitable future tack coat application options.

Evaluation of the characteristics of plasma sprayed ceramic coatings by Indentation test (압입 시험에 의한 플라즈마 세라믹 용사코팅의 특성 평가)

  • Choi, Se-Young;Chae, Young-Hun;Kim, Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.248-254
    • /
    • 2002
  • The most controversial topics in plasma sprayed ceramic coating system are recently mechanical properties such as bond strength, cohesive strength, toughness and so on. Determination of bond strength of coatings is one of the most important problems. In the industry, the bond strength of coating system has been estimated by Pull-off test(ASTM standard C633-79). But, without a fixed jig and specimen, it is impossible to obtain the bond strength. Therefore, it is necessary to study the critical fracture load on interface of the coating by indentation test. Because the critical fracture load plays an important role in evaluating the bond strength for plasma sprayed ceramic coating system. So, we have estimated critical fracture load in plasma sprayed ceramic coating system, and it was shown that inverse relationship between the cross-section hardness of coating and the critical fracture load(Pc). In case of the high load(1kgf, 2kgf) in $Al_{2}O_{3}+13%TiO_{2}$, it was found that the critical point(Pco), which the coating was broken on.

  • PDF

A Trade-Off between the Efficiency, Ripple and Volume of a DC-DC Converter

  • Taherbaneh, Mohsen;Rezaie, Amir H.;Ghafoorifard, Hasan;Mirsamadi, Maddad;Menh, Mohammad B.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.621-631
    • /
    • 2011
  • In space qualified DC-DC converters, optimization of the following electrical characteristics is of greater interest in comparison with other specifications; power loss/efficiency, output voltage ripple and volume/weight. The main goal of this paper is to present an appropriate solution for optimizing the above mentioned characteristics. For this purpose, a comprehensive power loss model of a DC-DC converter is fully developed. Proper models are also demonstrated for assessment of the output voltage ripple and the utilized transformer volume as the bulkiest component in a DC-DC converter. In order to provide a test bed for evaluation of the proposed models, a 50W push-pull DC-DC converter is designed and implemented. Finally, a novel cost function with three assigned weight functions is proposed in order to have a trade-off among the power loss, the output voltage ripple and the utilized transformer volume of the converter. The cost function is optimized for applications in which volume has the highest priority in comparison with power loss and ripple. The optimization results show that the transformer volume can be decreased by up to 51% and this result is verified by experimental results. The developed models and algorithms in this paper can be used for other DC-DC converter topologies with some minor modifications.

Properties of VES-LMC Adhesive Strength for Surface Removal Methods (절삭방법에 따른 VES-LMC의 부착강도 특성)

  • Kim, Ki-Heun;Jeong, Won-Kyong;Lee, Jin-Beom;Lee, Bong-Hak;Yun, Kyong-Koo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.543-546
    • /
    • 2005
  • The development and maintenance of a sound bond are an essential requirements of concrete repair and replacement. The bond property of a bonded overlay to its substrate concrete during the lifetime is one of the most important performance requirements which should be quantified This study was performed to investigate the characteristics of adhesive strength for overlay concrete. Three different removal methods of deteriorated concrete such as chip-patch, mill-patch and water-jet were varied in this study. According to the adhesive strength of pull- off test, case III using water-jet was measured $2\~3$ times higher than that of chip-patch or mill-patch.

  • PDF

Effect of Surface Pretreatment on the Corrosion Resistance of Epoxy-Coated Carbon Steel

  • Lee, DongHo;Park, JinHwan;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.165-172
    • /
    • 2012
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting with different size, steel shot ball blasting and power tool treatment. To study the effect of the treatments, the topology of the treated surface was observed by optical 3D microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with hygrothermal cyclic testing. The results of EIS indicated that the epoxy-coated carbon steel treated with steel grit blasting showed an improved corrosion resistance compared to untreated epoxy-coated surfaces or surfaces subjected to shot ball blasting and power tool treatments.