• Title/Summary/Keyword: pseudorange

Search Result 100, Processing Time 0.036 seconds

A Navigation Method Based on the NDGPS and LORAN-C (NDGPS와 LORAN-C 기반의 항법 방안 연구)

  • Shin, Mi-Young;Park, Chan-Sik;Lee, Chang-Bok;Suh, Sang-Hyun;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.891-897
    • /
    • 2006
  • The coverage of the NDGPS is nationwide currently and by 2007 more than 2 NDGPS signal will be available in most of Korean peninsula both coastal area and inland. The role of NDGPS beacon is transmitting pseudorange corrections however if range or pseudorange can be measured from NDGPS beacon signal, it might be possible to construct an independent regional navigation system: The range from NDGPS beacon signal can be used as additional measurements to remove GPS shadow area and to improve accuracy and reliability of GPS. Furthermore, by adding Loran-C, a regional radio navigation system without GPS can be possible. In this paper, a feasibility study on the regional positioning system using NDGPS and LORAN-C are given. The results show that the NDGPS and LORAN-C can be used as a ground based regional navigation system if requirements such as synchronization of NDGPS network, dual coverage of NDGPS, navigation algorithm for both NDGPS and LORAN-C measurements and an efficient ASF compensation method are met.

Analysis of Position Error Variance on GNSS Augmentation System due to Non-Common Measurement Error (비공통오차 증가로 인한 위성항법보강시스템 위치 오차 분산 변화 분석)

  • Jun, Hyang-Sig;Ahn, Jong-Sun;Yeom, Chan-Hong;Lee, Young-Jae;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.6
    • /
    • pp.1045-1050
    • /
    • 2008
  • A GNSS augmentation system provides precision information using corrected GNSS pseudorange measurements. Common bias errors are corrected by PRC (Pseudorange Correction) between reference stations and a rover. However non-common errors (ionospheric and tropospheric noise error) are not corrected. Using position error variance this paper analyzes non-common error (noise errors) of ionosphere and troposphere wet vapor.

Development of the KASS Multipath Assessment Tool

  • Cho, SungLyong;Lee, ByungSeok;Choi, JongYeoun;Nam, GiWook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The reference stations in a satellite-based augmentation system (SBAS) collect raw data from global navigation satellite system (GNSS) to generate correction and integrity information. The multipath signals degrade GNSS raw data quality and have adverse effects on the SBAS performance. The currently operating SBASs (WAAS and EGNOS, etc.) survey existing commercial equipment to perform multipath assessment around the antennas. For the multi-path assessment, signal power of GNSS and multipath at the MEDLL receiver of NovAtel were estimated and the results were replicated by a ratio of signal power estimated at NovAtel Multipath Assessment Tool (MAT). However, the same experiment environment used in existing systems cannot be configured in reference stations in Korean augmentation satellite system (KASS) due to the discontinued model of MAT and MEDLL receivers used in the existing systems. This paper proposes a test environment for multipath assessment around the antennas in KASS Multipath Assessment Tool (K-MAT) for multipath assessment. K-MAT estimates a multipath error contained in the code pseudorange using linear combination between the measurements and replicates the results through polar plot and histogram for multipath assessment using the estimated values.

Analysis of Double-Differenced Code-Pseudorange Noise Characteristics of GNSS Receiver Combinations using Zero-Baseline Test (영기선 테스트를 이용한 GNSS 수신기 조합별 코드의사거리 이중차분 잡음 특성 분석)

  • Bong-Gyu Park;Kwan-Dong Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.245-256
    • /
    • 2024
  • Following the introduction of civilian navigation, the commercial Global Navigation Satellite System (GNSS) receivers' market has been expanding in various fields such as autonomous driving and smart cities. With improved receiver performance and widespread use of GNSS, the configurations of base and rover receivers are becoming more complex. As a result, user must consider combinations of base stations with different qualities, costs, and performances. To address these issues, we conducted zero-baseline tests to analyze the double-differenced code-pseudorange noise of various receiver combinations, ranging from low- to high-cost. The results showed that the noise varied depending on the receiver combination. Notably, receivers from the same manufacturer exhibited similar noise and positioning errors despite significant price differences. We also found that the double-differenced noise of all receiver combinations was correlated with the Carrier-to-Noise Density Ratio (C/N0), the satellite elevation angle, and the Doppler shift, and it did not perfectly follow a normal distribution. Further analysis based on Modified Allan Deviation (MDEV) showed that different types of noise were observed for each receiver combination and the double-differenced noise and positioning errors have similar statistical characteristics. From this study, the importance of receiver combinations and their various characteristics can be better understood.

Method of Differential Corrections Using GPS/Galileo Pseudorange Measurement for DGNSS RSIM (DGNSS RSIM을 위한 GPS/Galileo 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.373-378
    • /
    • 2014
  • In order to prepare for recapitalization of differential GNSS (DGNSS) reference station and integrity monitor (RSIM) due to GNSS diversification, this paper focuses on differential correction algorithm using GPS/Galileo pesudorange. The technical standards on operation and broadcast of DGNSS RSIM are described as operation of differential GPS (DGPS) RSIM for conversion of DGNSS RSIM. Usually, in order to get the differential corrections of GNSS pesudorange, the system must know the real positions of satellites and user. Therefore, for calculating the position of Galileo satellites correctly, using the equation for calculating the SV position in Galileo ICD (Interface Control Document), it estimates the SV position based on Ephemeris data obtained from user receiver, and calculates the clock offset of satellite and user receiver, system time offset between GPS and Galileo, then determines the pseudorange corrections of GPS/Galileo. Based on a platform for performance verification connected with GPS/Galileo integrated signal simulator, it compared the PRC (pseudorange correction) errors of GPS and Galileo, analyzed the position errors of DGPS, DGalileo, and DGPS/DGalileo respectively. The proposed method was evaluated according to PRC errors and position accuracy at the simulation platform. When using the DGPS/DGalileo corrections, this paper could confirm that the results met the performance requirements of the RTCM.

Ionosphere Modeling and Estimation Using Regional GPS Data (지역적인 GPS 관측 데이터를 이용한 이온층 모델링 및 추정)

  • 황유라;박관동;박필호;임형철;조정호
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.277-284
    • /
    • 2003
  • We present a GPS-derived regional ionosphere model, which estimates Total Electron Content (TEC) in a rectangular grid on the spherical shell over Korea. After dividing longitude and latitude over Korea with 1$^{\circ}$$\times$1$^{\circ}$ spatial resolution, the TEC at the vertex of the grid was estimated by the Kalman filter. The GPS data received from nine nationwide GPS stations, operated by Korea Astronomy Observatory (KAO), were used for this study. To reduce inherent noises, the pseudorange data were phase-leveled by a linear combination of pseudoranges and carrier phases. The solar-geomagnetic reference frame, which is less variable to the ionosphere movement due to the Sun and the geomagnetic field than an Earth-fixed frame, was used. During a quiet time of solar activity, the KAO's regional ionosphere map indicated 30-45 Total Electron Content Unit at the peak of the diurnal variation. In comparison with the Global ionosphere Map of the Center for Orbit Determination in Europe, RMS differences were at the level of 4-5 TECU for five days.

Performance Analysis of Multi-GNSS Positioning Accuracy with Code Pseudorange of Dual-Frequency Android Smartphone in Maritime Environment (안드로이드 스마트폰의 이중 주파수 GNSS 의사거리 기반 해상 측위정확도 성능 분석)

  • Seo, Kiyeol;Kim, Youngki;Jeon, Tae-Hyeong;Son, Pyo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1588-1595
    • /
    • 2021
  • Android-based smartphones receive the global navigation satellite system (GNSS) signals to determine their location and provide the GNSS raw measurement to users. The available GNSS signals on the current Android devices are GPS, GLONASS, Galileo, BeiDou, QZSS. This research has analyzed the performance of multi-GNSS position accuracy based on the pseudorange of the smartphone for maritime users. Smartphones capable of receiving dual-frequency are installed on a ship, and multi-GNSS raw information in maritime environment was measured to present the results of comparing the GNSS pseudorange-based dual-frequency positioning performance for each smarphone. Furthermore, we analyzed whether the results of the positioning performance can meet the HEA requirement of IMO for maritime navigation users. As the results of maritime experiment, it was confirmed that in the case of the smartphones supporting the dual-frequency, the position accuracy within 6 meters (95%) could be obtained, and the HEA position accuracy performance within 10 meters (95%) required by IMO could be achieved.

The Study about Accuracy Kinematic GPS Survey (정확한 동적 GPS 측량에 관한 연구)

  • 박운용;이종출;이인수;나종기
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.45-49
    • /
    • 2004
  • The Navstar Global Positioning System(GPS) is an advanced navigation satelite system for determination of position, velocity and time. It can provide three-dimensional positioning on a global basis, independent of weather, 24 hours per day. Test results show that the carrier phase and pseudorange corrections are suitable for a kinematic GPS system. Using these corrections are more effective than using raw GPS data, since fewer bits are required for transmission Additionally, the number of computation required at the rover is reduced when corrections, rather than raw measurement are transmitted

  • PDF

Development of skier-training software using real-time DGPS (실시간 DGPS를 이용한 스키어(skier) 교육용 소프트웨어 개발)

  • 윤영선;김도윤;조영수;최선정;이상효;장재규;한광훈;박성민;기창돈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.53-53
    • /
    • 2000
  • In this paper, we introduce the real-time skier-training software using DGPS. We used a PCS to receive the pseudorange correction messages from the reference station. We tested the performance of this system and could get a skier's position in real-time with high accuracy. It can help skier-trainers to monitor a skier's trajectory and teach him mote effectively This paper will show you how the system works and prove it has good performance.

  • PDF

Performance Analysis of Korean WADGPS Algorithms with NDGPS Data

  • Yun, Young-Sun;Kim, Do-Yoon;Pyong, Chul-Soo;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.44-51
    • /
    • 2005
  • To provide more accurate and reliable positioning and timing services to Korean nationwide users, the Ministry of Maritime Affairs and Fisheries of Korea is implementing Korean NDGPS (Nationwide DGPS), which is operational partly. And it also has a plan to construct WADGPS (Wide Area Differential GPS) system using sites and equipments of the NDGPS reference stations. For that, Seoul National University GNSS Laboratory is implementing and testing prototypes of WRS (Wide-area Reference Station) and WMS (Wide-area Master Station). Until now, because there are not enough installed WRSs to be used for computing wide area correction information, we cannot test algorithms of WMS with the data processed actually in WRSs. Therefore to evaluate the performance of the algorithms, we made a MATLAB program which can process RINEX (Receiver INdependent Exchange) format data with WADGPS algorithm. Using that program which consists of WRS, WMS and USER modules, we processed the data collected at NDGPS reference stations, which are saved in RINEX format. In WRS module, we eliminate the atmospheric delay error from the pseudorange measurement, smooth the measurement by hatch filter and calculate pseudorange corrections for each satellite. WMS module collects the processed data from each reference stations to generate the wide area correction information including estimated satellite ephemeris errors, ionospheric delays at each grid point, UDRE (User Differential Range Error), GIVE (Grid Ionosphere Vertical Error) and so on. In USER part, we use the measurements of reference stations as those of users and estimate the corrected users' positions and protection levels (HPL, VPL). With the results of estimation, we analyzed the performance of the algorithms. We assured the estimated UDRE /GIVE values and the protection levels bound the corresponding errors effectively. In this research, we can expect the possible performance of WADGPS in Korea, and the developed modules will be useful to implementation and improvement of the algorithms.