• Title/Summary/Keyword: pseudo-dynamic method

Search Result 128, Processing Time 0.029 seconds

Numerical simulation of the experimental results of a RC frame retrofitted with RC Infill walls

  • Kyriakides, Nicholas;Chrysostomou, Christis Z.;Kotronis, Panagiotis;Georgiou, Elpida;Roussis, Panayiotis
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.735-752
    • /
    • 2015
  • The effectiveness of seismic retrofitting of RC-frame buildings by converting selected bays into new walls through infilling with RC walls was studied experimentally using a full-scale four-storey model tested with the pseudo-dynamic (PsD) method. The frames were designed and detailed for gravity loads only using different connection details between the walls and the bounding frame. In order to simulate the experimental response, two numerical models were formulated differing at the level of modelling. The purpose of this paper is to illustrate the capabilities of these models to simulate the experimental nonlinear behaviour of the tested RC building strengthened with RC infill walls and comment on their effectiveness. The comparison between the capacity, in terms of peak ground acceleration, of the strengthened frame and the one of the bare frame, which was obtained numerically, has shown a five-fold increase.

A Discussion on the Improvement of Pseudo-Static Seismic Design Criteria of Retaining Wall in Domestic (국내 옹벽의 유사정적 내진설계기준 개선방향에 대한 고찰)

  • Jo, Seong-Bae;Ha, Jeong Gon;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2015
  • This paper reviews the current seismic design code and research for dynamic earth pressure on retaining structures. Domestic design codes do not clearly define the estimation of dynamic earth pressure and give different comments for seismic coefficient, wall inertia and distribution of dynamic earth pressure using Mononobe-Okabe method. AASHTO has been revised reflecting current research and aims for effective seismic design. Various design codes are analyzed to compare their performance and economic efficiency. The results are used to make improvement of current domestic seismic design code. Further, it is concluded that the experimental investigation is also needed to verify and improve domestic seismic code for dynamic earth pressure.

Bidirectional Platoon Control Using Backstepping-Like Feedback Linearization (역보행 제어 형태의 궤환 선형화를 이용한 양방향 플래툰 제어)

  • Kwon, Ji-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.410-415
    • /
    • 2013
  • This paper proposes a bidirectional platoon control law using a coupled distance error based on the backstepping-like feedback linearization control method for an interconnected mobile agent system with a string structure. Unlike the previous results where the single agent was controlled using the only own information without other agents, the proposed control law cannot show the only distance error convergence of each agent, but also the string stability of the whole system. Also, the control performances are improved by the proposed control law in spite of low performance of bidirectional control strategy in the previous results. The proposed bidirectional platoon control algorithm is based on the backstepping-like feedback linearization control method. The position errors between each agent and the preceding and the behind agents are coupled by weighted summation. By the proposed control law, the distance error of each agent can converge to zero while the string stability is guaranteed when the coupled errors can converge to zero. To this end, the back-stepping control method is employed. The pseudo velocity input is determined considering the kinematic relationship between agents and the string stability. Then, the actual dynamic control input is determined to make the actual velocity converge to the pseudo velocity input. The stability analysis and the simulation results of the proposed method are included in order to demonstrate the practical application of the proposed algorithm.

Knowledge Distillation for Unsupervised Depth Estimation (비지도학습 기반의 뎁스 추정을 위한 지식 증류 기법)

  • Song, Jimin;Lee, Sang Jun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.209-215
    • /
    • 2022
  • This paper proposes a novel approach for training an unsupervised depth estimation algorithm. The objective of unsupervised depth estimation is to estimate pixel-wise distances from camera without external supervision. While most previous works focus on model architectures, loss functions, and masking methods for considering dynamic objects, this paper focuses on the training framework to effectively use depth cue. The main loss function of unsupervised depth estimation algorithms is known as the photometric error. In this paper, we claim that direct depth cue is more effective than the photometric error. To obtain the direct depth cue, we adopt the technique of knowledge distillation which is a teacher-student learning framework. We train a teacher network based on a previous unsupervised method, and its depth predictions are utilized as pseudo labels. The pseudo labels are employed to train a student network. In experiments, our proposed algorithm shows a comparable performance with the state-of-the-art algorithm, and we demonstrate that our teacher-student framework is effective in the problem of unsupervised depth estimation.

Dynamic Evaluation of Bridge Mounted Structures (교량상부에 부착된 구조물의 동적거동해석)

  • Kim, Dong-Joo;Lee, Wan-Soo;Yang, Jong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.324-327
    • /
    • 2011
  • The design requirement for ground mounted sign structures are fairly well defined in the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and consists of applying an equivalent pseudo-dynamic loading to account for the dynamic effects of wind loads and ignores the dynamic effect due to moving vehicle loads. This design approach, however, should not be applied to the design of bridge mounted sign structures because ignoring the dynamic effects of the moving vehicle loads may produce non-conservative results, since the stiffness of the bridge structure can greatly influence the behavior. Not enough information is available in the literatures which provide guide lines to include the influence of moving vehicles in the design of the bridge mounted sign structures. This paper describes a theoretical methodology, Bridge-Vehicle Interaction Element, which can be utilized to account for the dynamic effect of moving vehicles. A case study is also included where this methodology was successfully applied. It was concluded that the bridge-vehicle interaction finite element developed can provide a more accurate representation of the behavior of bridge mounted sign structures. The result of these analysis enabled development of simple and effective retrofitting scheme for the existing support system of bridge-mounted-structure.

  • PDF

Analysis of building frames with viscoelastic dampers under base excitation

  • Shukla, A.K.;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.71-87
    • /
    • 2001
  • A frequency domain response analysis is presented for building frames passively controlled by viscoelastic dampers, under harmonic ground excitation. Three different models are used to represent the linear dynamic force-deformation characteristics of viscoelastic dampers namely, Kelvin model, Linear hysteretic model and Maxwell model. The frequency domain solution is obtained by (i) an iterative pseudo-force method, which uses undamped mode shapes and frequencies of the system, (ii) an approximate modal strain energy method, which uses an equivalent modal damping of the system in each mode of vibration, and (iii) an exact method which uses complex frequency response function of the system. The responses obtained by three different methods are compared for different combinations of viscoelastic dampers giving rise to both classically and non-classically damped cases. In addition, the effect of the modelling of viscoelastic dampers on the response is investigated for a certain frequency range of interest. The results of the study are useful in appropriate modelling of viscoelastic dampers and in understanding the implication of using modal analysis procedure for building frames which are passively controlled by viscoelastic dampers against base excitation.

The Seismic Performance for Concrete-filled Steel Piers (콘크리트 충전 강교각의 내진 성능)

  • 정지만;장승필;인성빈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.189-196
    • /
    • 2002
  • The capacity of CFS piers has not been used to a practical design, because there is no guide of a seismic design for CFS piers. Therefore, the guide of a seismic design value is derived from tests of CFS piers in order to apply it to a practical seismic design. Steel piers and concrete-filled steel piers are tested with constant axial load using quasi-static cyclic lateral load to check ductile capacity and using the real Kobe ground motion of pseudo-dynamic test to verify seismic performance. The results prove that CFS piers have more satisfactory ductility and strength than steel piers and relatively large hysteretic damping in dynamic behaviors. The seismic performance of steel and CFS piers is quantified on the basis of the test results. These results are evaluated through comparison of both the response modification factor method by elastic response spectrum and the performance-based design method by capacity spectrum and demand spectrum using effective viscous damping. The response modification factor of CFS piers is presented to apply in seismic design on a basis of this evaluation for a seismic performance.

  • PDF

Analysis of Practical Dynamic Force of Structure with Inverse Problem (역문제에 의한 구조물의 실동하중 해석)

  • 송준혁;노홍길;김홍건;유효선;강희용;양성모
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • Vehicle structures are composed of many substructure connected to one another by various types of mechanical joints. In vehicle engineering it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. It is difficult to obtain the accurate load history of specified positions because of the errors such as modeling, measurement and etc. In the beginning of design exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic force determination is developed by the combination of the principal stresses of F. E. Analysis and experiment. Least square pseudo inverse matrix is adopted to obtain in inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these non. Finally, to verify the proposed procedure, a bus is analyzed. This measurement and prediction technology can be extended to the structural modification of any geometric shape in complex structure.

Neural Network Based Adaptive Control for a Flying-Wing Type UAV with Wing Damage (주익이 손상된 전익형 무인기를 위한 신경회로망 적응제어기법에 관한 연구)

  • Kim, DaeHyuk;Kim, Nakwan;Suk, Jinyoung;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.342-349
    • /
    • 2013
  • A damage imposed on an unmanned aerial vehicle changes the flight dynamic characteristics, and makes difficult for a conventional controller based on undamaged dynamics to stabilize the vehicle with damage. This paper presents a neural network based adaptive control method that guarantees stable control performance for an unmanned aerial vehicle even with damage on the main wing. Additionally, Pseudo Control Hedging (PCH) is combined to prevent control performance degradation by actuator characteristics. Asymmetric dynamic equations for an aircraft are chosen to describe motions of a vehicle with damage. Aerodynamic data from wind tunnel test for an undamaged model and a damaged model are used for numerical validation of the proposed control method. The numerical simulation has shown that the proposed control method has robust control performance in the presence of wing damage.

Evaluation of the Seismic Safely of Concrete Gravity Dams (콘크리트 중력식 댐의 내진 안전성 평가)

  • 소진호;정영수;김용곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • Recently, the seismic safety evaluation of concrete gravity dams is raised due to the damage or the failure of dams occurred by the 1995 Kobe earthquake, the 1999 Taiwan earthquake, etc. Failre of dam may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about 'earthquake-resistance' or 'seismic safety'of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic safety of concrete gravity dams on the basis of the evaluation method of seismic safety of concrete gravity dams in U.S.A., Japan, Canada, and etc. level 1 is a preliminary evaluation which is for purpose f screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. Finally, level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dam on operation showed good seismic performance under the designed artificial earthquake.