• Title/Summary/Keyword: pseudo valuation domain

Search Result 12, Processing Time 0.018 seconds

NOTES ON GRADING MONOIDS

  • Lee, Je-Yoon;Park, Chul-Hwan
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.189-194
    • /
    • 2006
  • Throughout this paper, a semigroup S will denote a torsion free grading monoid, and it is a non-zero semigroup with 0. The operation is written additively. The aim of this paper is to study semigroup version of an integral domain ([1],[3],[4] and [5]).

  • PDF

Some Analogues of a Result of Vasconcelos

  • DOBBS, DAVID EARL;SHAPIRO, JAY ALLEN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.817-826
    • /
    • 2015
  • Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R = K. We say that R has property (${\star}$) if for each nonzero element $a{\in}R$, each monomorphic R-module endomorphism of R/Ra is an isomorphism. If R has property (${\star}$), then each nonzero principal prime ideal of R is a maximal ideal, but the converse is false, even for integral domains of Krull dimension 2. An integral domain R has property (${\star}$) if and only if R has no R-sequence of length 2; the "if" assertion fails in general for non-domain rings R. Each treed domain has property (${\star}$), but the converse is false.