• Title/Summary/Keyword: pseudo order

Search Result 1,049, Processing Time 0.028 seconds

A New Bootstrap Simulation Method for Intermittent Demand Forecasting (간헐적 수요예측을 위한 부트스트랩 시뮬레이션 방법론 개발)

  • Park, Jinsoo;Kim, Yun Bae;Lee, Ha Neul;Jung, Gisun
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.19-25
    • /
    • 2014
  • Demand forecasting is the basis of management activities including marketing strategy. Especially, the demand of a part is remarkably important in supply chain management (SCM). In the fields of various industries, the part demand usually has the intermittent characteristic. The intermittent characteristic implies a phenomenon that there frequently occurs zero demands. In the intermittent demands, non-zero demands have large variance and their appearances also have stochastic nature. Accordingly, in the intermittent demand forecasting, it is inappropriate to apply the traditional time series models and/or cause-effect methods such as linear regression; they cannot describe the behaviors of intermittent demand. Markov bootstrap method was developed to forecast the intermittent demand. It assumes that first-order autocorrelation and independence of lead time demands. To release the assumption of independent lead time demands, this paper proposes a modified bootstrap method. The method produces the pseudo data having the characteristics of historical data approximately. A numerical example for real data will be provided as a case study.

High-density genetic mapping using GBS in Chrysanthemum

  • Chung, Yong Suk;Cho, Jin Woong;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.57-57
    • /
    • 2017
  • Chrysanthemum is one of the most important floral crop in Korea produced about 7 billion dollars (1 billion for pot and 6 billion for cutting) in 2013. However, it is difficult to breed and to do genetic study because 1) it is highly self-incompatible, 2) it is outcrossing crop having heterozygotes, and 3) commercial cultvars are hexaploid (2n = 6x = 54). Although low-density genetic map and QTL study were reported, it is not enough to apply for the marker assisted selection and other genetic studies. Therefore, we are trying to make high-density genetic mapping using GBS with about 100 $F_1s$ of C. boreale that is oHohhfd diploid (2n = 2x = 18, about 2.8Gb) instead of commercial culitvars. Since Chrysanthemum is outcrossing, two-way pseudo-testcross model would be used to construct genetic map. Also, genotype-by-sequencing (GBS) would be utilized to generate sufficient number of markers and to maximize genomic representation in a cost effective manner. Those completed sequences would be analyzed with TASSEL-GBS pipeline. In order to reduce sequence error, only first 64 sequences, which have almost zero percent error, would be incorporated in the pipeline for the analysis. In addition, to reduce errors that is common in heterozygotes crops caused by low coverage, two rare cutters (NsiI and MseI) were used to increase sequence depth. Maskov algorithm would also used to deal with missing data. Further, sparsely placed markers on the physical map would be used as anchors to overcome problems caused by low coverage. For this purpose, were generated from transcriptome of Chrysanthemum using MISA program. Among those, 10 simple sequence repeat (SSR) markers, which are evenly distributed along each chromosome and polymorphic between two parents, would be selected.

  • PDF

Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon (활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.206-213
    • /
    • 2017
  • The adsorption of crystal violet dyes from aqueous solution using the granular activated carbon was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The adsorption characteristic of crystal violet followed Langmuir isotherm. Based on the estimated Langmuir separation factor ($R_L=0.02{\sim}0.106$), this process could be employed as an effective treatment (0 < $R_L$ < 1). The adsorption kinetics followed the pseudo second order model. The values of Gibbs free energy (-1.61~-11.66 kJ/mol) and positive enthalpy (147.209 kJ/mol) indicated that the adsorption process is a spontaneous and endothermic reaction. The isosteric heat of adsorption decreased with increasing of surface loading by the limited adsorbent-adsorbate interaction due to increased surface coverage.

Adsorption Characteristics of 2,4-Dichlrophenol by Magnetic Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 자성 활성탄을 이용한 2,4-디클로로페놀의 흡착특성)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.388-394
    • /
    • 2018
  • The removal of 2,4-dichlorophenol (2,4-dichlorophenol, 2,4-DCP) in aqueous solution was studied using the magnetic activated carbon (MAC) prepared from waste citrus peel. The adsorption characteristics of 2,4-DCP by MAC were investigated by varying the contact time, MAC dose, solution temperature, pH and 2,4-DCP concentration. The isothermal adsorption data were well explained by the Langmuir isotherm model equation and the maximum adsorption capacity calculated from the Langmuir isotherm equation was 312.5 mg/g. The adsorption kinetic data were well described by the pseudo-second-order reaction equation. The intraparticle diffusion model data indicated that both the film and intraparticle diffusion occur simultaneously during the adsorption process. The thermodynamic parameters of ${\Delta}H^o$ and ${\Delta}G^o$ have positive and negative values, respectively, indicating that the adsorption of 2,4-DCP by MAC is a spontaneous endothermic reaction. After the adsorption experiment was completed, the used MAC could be easily separated by an external magnet.

Adsorption Characteristics of Antibiotics Amoxicillin in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 활성탄을 이용한 수중의 항생제 Amoxicillin의 흡착 특성)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.369-375
    • /
    • 2018
  • Batch experiments were conducted to investigate the effects of operating parameters such as the temperature, initial concentration, contact time and adsorbent dosage on the adsorption of antibiotics amoxicillin (AMX) by waste citrus peel based activated carbon (WCAC). The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of AMX by WCAC calculated from the Langmuir isotherm model was 125 mg/g. The adsorption of AMX by WCAC shows that the film diffusion (external mass transfer) and the intraparticle diffusion occur simultaneously during the adsorption process. The adsorption rate is more influenced by the intraparticle diffusion than that of the external mass transfer as the particle size of WCAC increases, and the intraparticle diffusion is the rate controlling step. The thermodynamic parameters indicated that the adsorption reaction of AMX by WCAC was an endothermic and spontaneous process.

Reduction of Nitrate using Nanoscale Zero-Valent Iron Supported on the Ion-Exchange Resin (이온교환 능력을 가진 지지체에 부착된 나노 영가철을 이용한 질산성 질소의 환원과 부산물 제거)

  • Park, Heesu;Park, Yong-Min;Jo, Yun-Seong;Oh, Soo-Kyeong;Kang, Sang-Yoon;Yoo, Kyoung-Min;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.679-687
    • /
    • 2007
  • Nanoscale zero valent ion (nZVI) technology is emerging as an innovative method to treat contaminated groundwater. The activity of nZVI is very high due to their high specific surface area, and supporting this material can help to preserve its chemical nature by inhibiting oxidation. In this study, nZVI particles were attached to granular ion-exchange resin through borohydride reduction of ferrous ions, and chemical reduction of nitrate by this material was investigated as a potential technology to remove nitrate from groundwater. The pore structure and physical characteristics were measured and the change by the adsorption of nZVI was discussed. Batch tests were conducted to characterize the activity of the supported nZVI and the results indicated that the degradation of nitrate appeared to be a pseudo first-order reaction with the observed reaction rate constant of $0.425h^{-1}$ without pH control. The reduction process continued but at a much lower rate with a rate constant of $0.044h^{-1}$, which is likely limited by mass transfer. To assess the effects of other ions commonly found in groundwater, the same experiments were conducted in simulated groundwater with the same level of nitrate. In simulated groundwater, the rate constant was $0.078h^{-1}$ and it also reduced to $0.0021h^{-1}$ in later phase. The major limitation in application of ZVI for nitrate reduction is ammonium production. By using a support material with ion exchange capacity, the problem of ammonium release can be solved. The ammonium was not detected in the batch test, even when other competitive ions such as calcium and potassium existed.

Kinetics of In-situ Degradation of Nerve Agent Simulants and Sarin on Carbon with and without Impregnants

  • Saxena, Amit;Sharma, Abha;Singh, Beer;Suryanarayana, Malladi Venkata Satya;Mahato, Timir Haran;Sharma, Mamta;Semwal, Rajendra Prasad;Gupta, Arvind Kumar;Sekhar, Krishnamurthy
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.158-165
    • /
    • 2005
  • Room temperature kinetics of degradation of nerve agent simulants and sarin, an actual nerve agent at the surface of different carbon based adsorbent materials such as active carbon grade 80 CTC, modified whetlerite containing 2.0 and 4.0 % NaOH, active carbon with 4.0 % NaOH, active carbon with 10.0 % Cu (II) ethylenediamine and active carbon with 10.0 % Cu (II) 1,1,1,5,5,5-hexafluoroacetylacetonate were studied. The used adsorbent materials were characterized for surface area and micropore volume by $N_2$ BET. For degradation studies solution of simulants of nerve agent such as dimethyl methylphosphonate (DMMP), diethyl chlorophosphate (DEClP), diethyl cyanophosphate (DECnP) and nerve agent, i.e., sarin in chloroform were prepared and used for the uniform adsorption on the adsorbent systems using their incipient volume at room temperature. Degradation kinetics was monitored by GC/FID and was found to be following pseudo first order reaction. Kinetics parameters such as rate constant and half life were calculated. Half life of degradation with modified whetlerite (MWh/NaOH) system having 4.0 % NaOH was found to be 1.5, 7.9, 1206 and 20 minutes for DECnP, DEClP, DMMP and sarin respectively. MWh/NaOH system showed maximum degradation of simulants of nerve agents and sarin to their hydrolysis products. The reaction products were characterized using NMR technique. MWh/NaOH adsorbent was also found to be active against sulphur mustard.

  • PDF

Tracking Filter Dealing with Nonlinear Inherence as a System Input (비선형 특성을 시스템 입력으로 처리하는 추적 필터)

  • Shin, Sang-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.774-781
    • /
    • 2014
  • The radar measurements are composed of range, Doppler and angles which are expressed as polar-coordinate components. An approach to match the measurements with the states of target dynamics which are modeled in cartesian coordinates is to use the pseudo-measurements or the extended Kalman filter in order to solve the mismatching problem. Another approach is that the states of dynamics are modeled in polar coordinates and measurement equation is linear. However, this approach bears that we have to deal with a time-varying dynamics. In this study, it is proposed that the states of dynamics are expressed as polar-coordinate component and the system matrix of the dynamic equation is modeled as a time-invariant. Nonlinear terms that appear due to the proposed modeling are regarded as a system input. The results of a series of simulation runs indicate that the tracking filter that uses the proposed modeling is viable from the fact that the Doppler measurement is easy to be augmented in the measurement equation.

Decomposition of Nitogen Heterocyclic Compounds(NHCs) in Aqueous Solution by Sonication

  • Yoo, Young-Eok;Maeda, Yasuaki
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.171-176
    • /
    • 2003
  • The sonolytic decomposition of NHCs, such as atrazine[6-chloro-N-ethyl-N' -(1-methylethyl)-1,3,5-triazine-2,4-diamine], simazine( 6-chloro-N,N' -diethyl-l ,3,5-triazine-2,4-diamine), trietazine(6-chloro-N,N,N'-triethyl-l,3,5-triazine-2,4-diamine), in water was investigated at a ultrasound frequency of 200kHz with an acoustic intensity of 200W under argon and air atmospheres. The concentration of NHCs decreased with irradiation, indicating pseudo-first-order kinetics. The rates were in the range 1.06∼2.07 (x10/sup -3/ min/sup -1/) under air and 1.30∼2.59(x10/sup -3/ min/sup -1/)under argon at a concentration of 200μM of NHCs. The rate of hydroxyl radicals(·OH) formation from water is 19.8μM min/sup -1/ under argon and 14.7 μM min/sup -1/ under air in the same sonolysis conditions. The sonolysis of NHCs is effectively inhibited, but not completely, by the addition of t-BuOH(2-methyl-2-propanol), which is known to be an efficient ·OH radical scavenger in aqueous sonolysis. This suggests that the main decomposition of NHCs proceeds via reaction with ·OH radical; a thermal reaction also occurs, although its contribution is small. The addition of appropriate amounts of Fenton's reagent [Fe/sup 2+/] accelerates the decomposition. This is probably due to the regeneration of ·OH radicals from hydrogen peroxide, which would be formed from recombination of ·OH radicals and which may contribute a little to the decomposition.

  • PDF

Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials

  • DEN, Muhammed Kamil O;ONGAR, Sezen KUC UKC
    • Advances in environmental research
    • /
    • v.8 no.1
    • /
    • pp.23-38
    • /
    • 2019
  • In this study, Malachite Green (MG) dye removal from synthetic wastewaters by adsorption process using raw boron enrichment waste (BEW) and it's modifications (with acid and ultrasound) were aimed. 81% MG removal was obtained by BEW at optimum equilibrium conditions (time: 40 min., dosage: 500 mg/dm3, pH: 5-6, speed: 200 rpm, 298 K). MG removal from wastewaters using acid modified boron enrichment waste (HBEW) was determined as 82% at optimum conditions (time: 20 min., dosage: 200 mg/dm3, pH: 10, speed: 200 rpm, 298 K). For ultrasound modified BEW (UBEW), the highest MG removal percent was achieved as 84% at optimum conditions (time: 30 min, dosage: 375 mg/ dm3, pH: 8, speed: 200 rpm, 298 K). The equilibrium data of Malachite Green was evaluated for BEW, HBEW and UBEW adsorbents by using sorption isotherms such as Langmuir, Freundlich and Temkin models, out of which Langmuir model (R2 = 0.971, 0.987 and 0.984) gave better correlation and maximum adsorption capacity was found to be 147.05, 434.78 and 192.30 mg/g, respectively. The adsorption kinetics followed the pseudo-second-order kinetic equation for sorption of MG onto wastes. A look at thermodynamic data reveals that natural sorption is spontaneous and endothermic because of free negative energy exchange and positive change in enthalpy, respectively. The results indicated that boron enrichment waste, and HCl and ultrasound-modified boron enrichment waste served as good alternative adsorbents in dye removal from wastewater.