KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.3904-3922
/
2022
As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.
1981년 ICOMOS-IFLA 국제 역사 정원 위원회에서 제정한 플로렌스 헌장에서는 역사정원을 식물이 주를 이루는 건축적 구성으로 이를 영원히 변하지 않도록 유지하고자 하는 예술가와 장인의 욕구사이에 존재하는 끊임없는 균형으로 보았다. 이처럼 정원의 주된 구성요소인 수목은 계절의 순환에 따라 생성과 소명을 반복하기 때문에 지속적인 관리가 필요하다. 이에 따라 우리나라 궁궐에서도 수목의 모습을 유지하기 위한 관리는 필수불가결한 요소였을 것이다. 다만 과거 궁궐의 수목관리 기법을 고증하는 것은 매우 중요한 일이지만 역사적 기록 부재와 일제강점기로 인해 명맥이 단절됨에 따라 연구가 어려운 실정이다. 또한 일반적으로 궁궐의 수목은 관리를 하지 않았다는 견해에 따라 궁궐 수목 관리 기법에 관한 연구는 지금까지 수행되지 않았다. 본 연구는 근대에 촬영된 사진을 토대로 전문가 인터뷰를 통해 과거 궁궐의 수목관리 판단 여부를 밝히는데 목적을 두었다. 근대기에 촬영된 사진을 활용하여 전문가에게 심층 인터뷰를 통해 수종의 식별과 전정여부를 파악한 내용을 토대로 결과는 다음과 같다. 첫째, 사진을 통해 수목의 수형과 잎 형태 식별이 가능함을 확인하였으며 정지·전정 등에 의해서 생기는 현상을 관찰함으로써 근대기 궁궐의 수목관리 시행 여부를 추정할 수 있었다. 둘째, 4개 분야에서 8명의 전문가들에게 심층 인터뷰를 한 결과 수종 식별, 전정여부 및 목적, 방법 등의 관리여부의 판별이 가능하였으며 집단별 의견의 차이가 크게 발생하지 않고 근거를 명확하게 제시하였다. 셋째, 궁궐 수목의 관리 유형은 수형관리, 수목의 위해 요인 제거, 하층식생관리가 주된 것으로 판단하였으며 존덕정, 관람정 등의 사진을 통해 촬영 시점인 일제강점기 이전에도 수목의 관리가 이루어졌음을 확인하였다. 촬영된 사진을 토대로 전문가 인터뷰를 거쳐 일제강점기 이전 수목관리 여부 추정이 가능하였다. 그러나 당시 시대 상황에 따라 자체적으로 수행된 것인지 일제에 의해 수행된 것인지는 사료의 부족으로 규명하지 못하였다. 하지만, 과거 궁궐의 수목관리를 하지 않았다는 견해를 수집된 자료를 통해 반박할 수 있는 근거자료를 마련하였으며 이를 뒷받침하는 전문가 의견을 종합하여 여부를 판단하였다. 또한 일반적인 정지·전정 이론을 토대로 전문가 의견에 대한 실증적인 검토를 실시하여 연구결과에 신뢰성을 확보하였다.
소셜 미디어 환경에서 여행과 커뮤니티에서 기고한 사진과 관련된 메타 데이터 (태그, 지리적 위치 및 찍은 날짜)에 기반한 개인화 된 여행 경로 추천 기법이 연구되고 있다. 사용자는 소설 미디어를 사용하고 자신의 위치 기록을 여행 경로의 형태로 기록한다. 이러한 여행 경로 정보는 미래의 여행자들에게 새로운 추천 정보를 제공하기 위한 유용한 정보로 활용 될 수 있다. 본 논문에서는 라이프 로그를 기반으로 한 개인화 된 여행 경로 추천 기법을 제안한다. 제안하는 기법은 여행자 및 지역 사회가 제공한 라이프 로그 및 사진 정보를 활용하여 사용자에게 개인화된 추천 서비스를 제공할 수 있을 뿐만 아니라 개별 관심 장소가 아닌 대중적인 여행 경로도 추천 할 수 있다 (POI). 제안하는 개인화된 여행 경로 추천 기법은 POI 가지치기 단계와 여행 경로 생성 단계로 구성된다. POI 가지치기 단계에서는 POI 전체 데이터로부터 사용자에게 추천할 경로를 생성하는데 필요한 POI만을 남기고 가치기를 수행한다. 여행 경로 생성 단계에서는 POI 가지치기 단계를 통해 도출된 POI 사용자 관심도, 비용, 시간, 이벤트 등을 고려하여 후보 경로를 생성한다.
This paper presents a new approach to the scheduling problem in the high level synthesis. In this approach, iterative rescheduling processes starting with ASAP(As Soon As Possible) scheduling result are performed in a branch-and-bound manner so to arrive at the scheduling result of the lowest hardware cost under the given timing constraint. At each iteration step, only the selected nodes are considered for rescheduling, and the lower bound cost estimation is performed to avoid the unnecessary attempts to search for an optimal result. This branch-and-bound method turns out to be effective in pruning the search space, and thus reducing run time considerably in many cases.
In this paper, in order to identify and recognize attack patterns, we propose a Bayesian classification using frequent patterns. In theory, Bayesian classifiers guarantee the minimum error rate compared to all other classifiers. However, in practice this is not always the case owing to inaccuracies in the unrealistic assumption{ class conditional independence) made for its use. Our method addresses the problem of attribute dependence by discovering frequent patterns. It generates frequent patterns using an efficient FP-growth approach. Since the volume of patterns produced can be large, we propose a pruning technique for selection only interesting patterns. Also, this method estimates the probability of a new case using different product approximations, where each product approximation assumes different independence of the attributes. Our experiments show that the proposed classifier achieves higher accuracy and is more efficient than other classifiers.
The auto-encoder network which is a good candidate to handle the modeling of the signal strength attenuation is designed for denoising and compensating the distortion of the received data. It provides a non-linear mapping function by iteratively learning the encoder and the decoder. The encoder is the non-linear mapping function, and the decoder demands accurate data reconstruction from the representation generated by the encoder. In addition, the adaptive network width which supports the automatic generation of new hidden nodes and pruning of inconsequential nodes is also implemented in the proposed algorithm for increasing the efficiency of the algorithm. Simulation results show that the proposed method can improve the neural network training surface to achieve the highest possible accuracy of the signal modeling compared with the conventional modeling method.
JSTS:Journal of Semiconductor Technology and Science
/
제16권6호
/
pp.771-780
/
2016
Detecting a set of longest paths is one of the crucial steps in static timing analysis and optimization. Recently, the process variation during manufacturing affects performance of the circuit design due to nanometer feature size. Measuring the performance of a circuit prior to its fabrication requires a considerable amount of computation time because it requires multi-corner and multi-mode analysis with process variations. An efficient algorithm of detecting the K-most critical paths in multi-corner multi-mode static timing analysis (MCMM STA) is proposed in this paper. The ISCAS'85 benchmark suite using a 32 nm technology is applied to verify the proposed method. The proposed K-most critical paths detection method reduces about 25% of computation time on average.
In this paper, the optimal evasive maneuver strategies for typical subsonic ASM(anti-ship missile) to reach its target ship with high survivability against CIWS(close in weapon system) are studied. The optimal evasive maneuver input is defined by the homing command optimizing the cost function which takes aiming errors of CIWS into account. The optimization problem for the effective evasive maneuver is formulated based on a simple missile dynamics model and a CIWS model. By means of solving the problem, a multiple hypotheses testing method is proposed. Since this method requires generation of too many hypotheses, the hypothesis-pruning technique is adopted. The solution shows that the optimal evasive maneuver is a bang-bane shaped command whose frequency is varied by the aimpoint determination strategy in CIWS.
A human is an expert in manipulation. We have acquired skills to perform dexterous operations based upon knowledge and experience attained over a long period of time. It is important in robotics to understand these human skills, and utilize them to bring about better robot control and operation It is hoped that the neurocontroller can be trained and organized by simply presenting human teaching data, which implicate human intention, strategy and expertise. In designing a neurocontroller, we must determine the size of neurocontroller. Improper size may not only incur difficulties in training neural nets, e.g. no convergence, but also cause instability and erratic behavior in machines. Therefore, it is necessary to determine the proper size of neurocontroller for human control transfer. In this paper, a new pruning method is developed, based on the penalty-term methods. This method makes ...
Kim, Hyun-Ran;Lee, Sin-Ho;Lee, Dong-Hyuk;Kim, Jeong-Soo;Park, Jin-Woo
The Plant Pathology Journal
/
제22권1호
/
pp.63-67
/
2006
Apple scar skin, one of the most destructive diseases affecting apple, is caused by Apple scar skin viroid (ASSV d). Fruit dappling appeared on several cultivars in Korea and has been distributed to major cultivated areas since 2001. ASSVd was identified from infected fruits by using nucleic acid sequence-based amplification with electrochemiluminescence (NASBA-ECL). NASBA-ECL method was faster and hundredfold more sensitive than reverse transcription-polymerase chain reaction (RT-PCR) for ASSVd detection in apple leaves/ stems. ASSVd was rapidly transmitted to the entire tree in the second year after artificial inoculation. The ASSVd could be transmitted efficiently by using contaminated pruning scissors to both lignified stems (60 to $70\%$) and green shoots (20 to $40\%$) of apple tree and young plants. Dipping of contaminated scissors in $2\%$ sodium hypochlorite solution effectively prevented viroid transmission. In the ASSV d-infected fruits, the viroid was easily detected from fruit skin, seed coat, and embryo. Moreover, embryo and endosperm separately excised from the ASSVd-infected seeds were ASSVd positive in NASBA-ECL assay. Seedlings germinated from ASSVd-positive seeds showed $7.7\%$ infection rate., which indicated that ASSVd is seed-borne.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.