An image semantic segmentation model is proposed based on improved ENet network in order to achieve the low accuracy of image semantic segmentation in complex environment. Firstly, this paper performs pruning and convolution optimization operations on the ENet network. That is, the network structure is reasonably adjusted for better results in image segmentation by reducing the convolution operation in the decoder and proposing the bottleneck convolution structure. Squeeze-and-excitation (SE) module is then integrated into the optimized ENet network. Small-scale targets see improvement in segmentation accuracy via automatic learning of the importance of each feature channel. Finally, the experiment was verified on the public dataset. This method outperforms the existing comparison methods in mean pixel accuracy (MPA) and mean intersection over union (MIOU) values. And in a short running time, the accuracy of the segmentation and the efficiency of the operation are guaranteed.
Due to the nature of the conjunctive Cone Penetration Test(CPT), which does not verify the actual sample directly, geotechnical engineers commonly classify the underground geomaterials using CPT results with the classification diagrams proposed by various researchers. However, such classification diagrams may fail to reflect local geotechnical characteristics, potentially resulting in misclassification that does not align with the actual stratification in regions with strong local features. To address this, this paper presents an objective method for more accurate local CPT soil classification criteria, which utilizes C4.5 decision tree models trained with the CPT results from the clay-dominant southern coast of Korea and the sand-dominant region in South Carolina, USA. The results and analyses demonstrate that the C4.5 algorithm, in conjunction with oversampling, outlier removal, and pruning methods, can enhance and optimize the decision tree-based CPT soil classification model.
In order to make up the deficiencies of the existing research results which cannot effectively deal with the nearest neighbor query based on the line segments in obstacle space, the k nearest neighbor query method of line segment in obstacle space is proposed and the STA_OLkNN algorithm under the circumstance of static obstacle data set is put forward. The query process is divided into two stages, including the filtering process and refining process. In the filtration process, according to the properties of the line segment Voronoi diagram, the corresponding pruning rules are proposed and the filtering algorithm is presented. In the refining process, according to the relationship of the position between the line segments, the corresponding distance expression method is put forward and the final result is obtained by comparing the distance. Theoretical research and experimental results show that the proposed algorithm can effectively deal with the problem of k nearest neighbor query of the line segment in the obstacle environment.
그래프마이닝에서 그래프패턴의 동형판단문제는 지수함수적 계산시간을 요구하기 때문에 그래프마이닝의 전체수행시간에서 동형판단 연산이 차지하는 비율이 매우 높다. 그러므로 그래프마이닝 알고리즘은 그래프동형판단을 최대한 효율적으로 할 필요가 있다. 본 논문은 그래프마이닝에서 빠른 수행시간을 보이는 gaston 알고리즘의 동형판단효율성을 증가시켜 수행시간을 평가해 보았으며, 제시한 방법으로 인해 더욱 향상된 성능을 보인다.
기존의 데이터 마이닝 방법들은 기본적으로 지식 발견의 대상이 되는 데이터 집합이 마이닝 작업 시작 이전에 명확히 정의되는 것으로 가정하며 이러한 가정은 고정적으로 정의된 특정 데이터 집합에 내재된 정보 추출이 데이터 마이닝의 목적이 될 때 유효하다. 또한, 기존의 데이터 마이닝 방법들은 대용량의 데이터 집합에 대한 마이닝 결과를 얻는데 있어서 상당한 처리 시간을 요구한다. 따라서, 새로운 트랜잭션 데이터가 지속적으로 추가되는 데이터 스트림에서 추가된 트랜잭션의 정보들을 포함하는 최신의 마이닝 결과를 최대한 빠른 시간 안에 얻기를 기대하는 실시간 처리 환경에서는 기존의 데이터 마이닝 방법을 적용하는 것이 거의 불가능하다. 이러한 목적에 부합하기 위해서 본 논문에서는 새로운 데이터 마이닝 개념인 개방 데이터 마이닝을 제안한다. 개방 데이터 마이닝에서는 새로운 트랜잭션이 발생함에 따라 이전에 발생한 트랜잭션들에 대한 마이닝 결과가 새롭게 갱신되며 따라서 확장된 전체 트랜잭션 집합에 대한 마이닝 결과를 빠르게 얻을 수 있다. 이러한 방법을 효과적으로 구현하기 위해서는 새롭게 출현한 항목에 대한 지연추가와 이전 데이터 집합에 출현한 항목들 중에서 중요하지 않는 항목에 대한 전지작업이 병행되어야 한다. 논문에서 제안하는 알고리즘은 알고리즘의 특성을 파악하기 위한 일련의 다양한 실험을 통해서 검증된다.
Although Open API has been invigorated by advancements in the software industry, diverse types of malicious code have also increased. Thus, many studies have been carried out to discriminate the behaviors of malicious code based on API data, and to determine whether malicious code is included in a specific executable file. Existing methods detect malicious code by analyzing signature data, which requires a long time to detect mutated malicious code and has a high false detection rate. Accordingly, in this paper, we propose a method that analyzes and detects malicious code using association rule mining and an Naive Bayes classification. The proposed method reduces the false detection rate by mining the rules of malicious and normal code APIs in the PE file and grouping patterns using the DHP(Direct Hashing and Pruning) algorithm, and classifies malicious and normal files using the Naive Bayes.
This paper presents a graph-based method of detecting and tracking moving objects in H.264/SVC bitstreams for video surveillance applications that makes use the information from spatial base and enhancement layers of the bitstreams. In the base layer, segmentation of real moving objects are first performed using a spatio-temporal graph by removing false detected objects via graph pruning and graph projection, followed by graph matching to precisely identify the real moving objects over time even under occlusion. For the accurate detection and reliable tracking of moving objects in the enhancement layer, as well as saving computational complexity, the identified block groups of the real moving objects in the base layer are then mapped to the enhancement layer to provide accurate and efficient object detection and tracking in the bitstreams of higher resolution. Experimental results show the proposed method can produce reliable results with low computational complexity in both spatial layers of H.264/SVC test bitstreams.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권5호
/
pp.1825-1839
/
2015
The final draft of the latest video coding standard, High Efficiency Video Coding (HEVC), was approved in January 2013. The coding efficiency of HEVC surpasses its predecessor, H.264/MPEG-4 Advanced Video Coding (AVC), by using only half of the bitrate to encode the same sequence with similar quality. However, the complexity of HEVC is sharply increased compared to H.264/AVC. In this paper, a method is proposed to decrease the complexity of intra coding in HEVC. Early pruning and an early splitting strategy are applied to the quadtree structure of coding tree units (CTU) and residual quadtree (RQT). According to our experiment, when our method is applied to sequences from Class A to Class E, the coding time is decreased by 44% at the cost of a 1.08% Bjontegaard delta rate (BD-rate) increase on average.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.5782-5799
/
2018
With the development of GPS and the popularity of mobile devices with positioning capability, collecting massive amounts of trajectory data is feasible and easy. The daily trajectories of moving objects convey a concise overview of their behaviors. Different social roles have different trajectory patterns. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit life patterns. However, most existing daily trajectories mining studies mainly focus on the spatial and temporal analysis of raw trajectory data but missing the essential semantic information or behaviors. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient approach for stay regions extraction from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on spatial and temporal similarity factor. Furthermore, a pruning strategy is proposed to lighten tedious calculations and comparisons. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.
지금까지의 빈발 항목 추출에서는 FP-Tree에 대한 순회와 패턴의 탐색이 필수적인 과정이기 때문에 마이닝 데이터를 트리에 저장하는데 공간이 필요하고 탐색하는데 CPU시간이 필요하기 마련이다. 이러한 단점을 극복하기 위하여 본 논문에서는 조건부 FP-Tree의 의존하지 않고 트랜잭션 데이터의 각 항목들의 위치 정보를 부여하여 트랜잭션 데이터를 2차원의 위치정보 Look-Up테이블로 변환하여 시간과 공간적인 접근성을 용이하게 한다. 또한 항목과 항목의 위치에 대한 매핑배열을 병행하여 시간 복잡도를 줄이는 방법을 고려하는 알고리즘을 제안한다. 실험 결과를 통하여 제안된 방법은 FIMI 저장소 웹 사이트에서 얻은 데이터 세트를 기반으로 많은 실행 시간과 메모리 사용을 줄일 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.