• 제목/요약/키워드: provisional crown and fixed partial denture materials

검색결과 6건 처리시간 0.023초

TIME-DEPENDENT DEFORMATION OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Pae Ahran;Jeong Mi-Sook;Kim Sung-Hun
    • 대한치과보철학회지
    • /
    • 제43권6호
    • /
    • pp.717-726
    • /
    • 2005
  • Statement of problem. One of the common problems of provisional crown and fixed partial denture materials is that when they are subjected to constant loads for a long period of time, they exhibit a dimensional change (creep). Purpose. The aim of this study was to investigate the viscoelastic behaviour of polymer-based provisional crown and fixed partial denture materials with time at constant compressive load. Material and methods. Three dimethacrylate-based materials (Protemp 3 Garant, Temphase, Luxatemp) and one monomethacrylate-based material (Trim) were selected. Dimensional changes of the specimens were recorded by a LVDT to evaluate their viscoelastic behavior and creep strain. For all specimens, two loading procedures were used. At first, static compressive stress of 4 MPa was applied for 30 minutes and followed by 1 hour of strain recovery. Then, after 24 hours of water storage, the specimens were loaded again. The creep values between materials were statistically analyzed using one-way ANOVA and multiple comparison $Scheff\acute{e}$ test. Independent samples t-test was also used to identify the difference of creep strain between first and secondary loading conditions at the significance level of 0.05. Results. Following application of the first loading, Trim showed the highest maximum creep strain (32.7%) followed by Luxatemp, Protemp 3 Garant and Temphase, with values of 3.78%, 2.86% and 1.77%, respectively. Trim was significantly different from other materials (P<0.05), while there were no significant differences among Luxatemp, Protemp 3 Garant and Temphase (P>0.05). The highest recovery and permanent set of Trim, were significantly different from those of others (P<0.05). At the secondary loading of the dimethacrylate-based materials, creep deformation, recovery and permanent set decreased and the percentage of recovery increased, while in Trim, all values of the measurements increased. This result showed that the secondary loading at 24 hours produced a significant creep magnitude. Conclusion. The dimethacrylate-based provisional crown and fixed partial denture materials showed significantly higher creep resistance and lower deformation than the monomethacrylate-based material. Thus, monomethacrylate-based materials should not be used in long-term stress-bearing situations.

DEGREE OF CONVERSION OF BIS-ACRYLIC BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Kim, Sung-Hun;Watts, David C.
    • 대한치과보철학회지
    • /
    • 제46권6호
    • /
    • pp.639-643
    • /
    • 2008
  • STATEMENT OF PROBLEM: The degree of conversion may influence the ultimate mechanical and physical properties of provisional crown and fixed partial denture materials. The high levels of the unreacted residual monomer may cause deleterious effect on the properties. PURPOSE: The purpose of this study was to measure the degree of conversion of bis-acrylic based provisional crown and fixed partial denture materials by using an infrared spectroscopic method. MATERIAL AND METHODS: Chemically activated three bis-acrylic based provisional crown and fixed partial denture materials, LuxaTemp [DMG, Hamburg, Germany], fast set TemPhase [Kerr, Orange, CA, USA] and Protemp 3 Garant [3M-ESPE, St Paul, MN, USA], were investigated by Fourier transform infrared spectrometry (FTIR). The FTIR spectra of the materials tested were immediately obtained after mixing. The specimens were stored under dry conditions and at $23^{\circ}C$ for 24 hours, and then the spectra of the materials were also obtained. The degree of conversion (%) was calculated from the spectrum of the absorbance between the aliphatic double bond at 1637 $cm^{-1}$ and the aromatic double bond at 1608 $cm^{-1}$ using the baseline method. The data were statistically analyzed using one-way ANOVA and the multiple comparison Scheffe test at the significance level of 0.05. RESULTS: The mean value and standard deviation of the degree of conversion were 52.5 % ${\pm}$ 1.1 %, 50.3 % ${\pm}$ 0.8 %, and 42.3 % ${\pm}$ 4.9 % for LuxaTemp, Protemp 3 Garant and fast set TemPhase, respectively. There was no significant difference between LuxaTemp and Protemp 3 Garant, whereas there was a statistically difference between Protemp 3 Garant and fast set TemPhase, and LuxaTemp and fast set TemPhase (P < .05). CONCLUSION: The degree of conversion of fast set TemPhase was significantly lower than those of the others. The degree of conversion may be correlated with the rate of polymerization.

THE EFFECT OF THICKNESS OF THE PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS ON THE TRANSLUCENCY AND MASKING EFFECT

  • Jae, Hyun-Jee;Kim, Sung-Hun;Lee, Seok-Hyung;Pae, Ahran
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.724-734
    • /
    • 2007
  • Statement of problem. Translucency and masking effect of provisional crown and fixed partial denture materials is an important esthetic consideration. But, provisional resin materials differ substantially in their ability to mask underlying colors. Purpose. The purpose of this study was to evaluate the translucency differences of provisional resin materials at various thicknesses and the correlation between the translucency and the masking efficiency. Material and methods. Two polymethyl methacrylate resins (Jet Tooth Shade, Alike) and three resin composites (Protemp 3 Garant, Luxatemp and Revotek LC) were used. Specimens (n=6) were fabricated from each material in 0.3, 0.5, 0.8, 1.0, 1.5, 2.0 and 3.0 mm thickness. The CIELAB parameters of each specimens were measured using a spectrophotometer. The translucency parameter (TP) values and the masking effect $({\Delta}ME^*{_{ab}})$ values were computed and all data were statistically analyzed by one-way ANOVA and the multiple comparisons Scheffe test. The correlation between the thickness and the TP values and the correlation between the thickness and the ${\Delta}ME^*{_{ab}}$ values were also evaluated by correlation analysis and regression analysis. Results. The TP values and the ${\Delta}ME^*{_{ab}}$ values were significantly related to the thickness in all specimens. The TP values were more sensitive to the change of thickness than the ${\Delta}ME^*{_{ab}}$ values. The order of the translucency by brand was different from the order of the masking effect by brand in all thickness groups. Conclusion. Within the limitations of this study, the translucency and masking effect of the provisional resin materials investigated were significantly related to their thickness. The masking effect of provisional resin was correlated with the translucency parameter, but the order of the masking effect by brand was different from the order of the translucency parameter.

THE EFFECT OF MONOMER TO POWDER RATIO ON POLYMERIZATION SHRINKAGE-STRAIN KINETICS OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Kim, Sung-Hun
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.735-742
    • /
    • 2007
  • Statement of problem. Although a number of previous investigations have been carried out on the polymerization shrinkage-strain kinetics of provisional crown and fixed partial denture (FPD) materials, the effect of the changes of liquid monomer to powder ratio on its polymerization shrinkage-strain kinetics has not been reported. Purpose. The purpose of this study was to investigate the influence of liquid monomer to powder ratio of polymer-based provisional crown and FPD materials on the polymerization shrinkage-strain kinetics. Material and methods. Chemically activated acrylic provisional materials (Alike, Jet, Snap) were investigated. Each material was mixed with different liquid monomer to powder ratios by volume (1.0:3.0, 1.0:2.5, 1.0:2.0, 1.0:1.5, 1.0:1.0). Time dependent polymerization shrinkage- strain kinetics of all materials was measured by the bonded-disk method as a function of time at $23^{\circ}C$. Five recordings were taken for each ratio. The results were statistically analyzed using one-way ANOVA and the multiple comparison Scheffe test at the significance level of 0.05. Trends were also examined by linear regression. Results. At 5 minutes after mixing, the polymerization shrinkage-strains of all materials ranged from only 0.01% to 0.49%. At 10 minutes, the shrinkage-strain of Alike was the highest, 3.45% (liquid monomer to powder ratio=1.0:3.0). Jet and Snap were 2.69% (1.0:2.0) and 1.58% (1.0:3.0), respectively (P>0.05). Most shrinkage (94.3%-96.5%) occurred at 30 minutes after mixing for liquid monomer to powder ratio, ranging from 1.0:3.0 to 1.0:1.0. The highest polymerization shrinkage-strain values were observed for the liquid monomer to powder ratio of 1.0:3.0. At 120 minutes after mixing, the shrinkage-strain values were 4.67%, 4.18%, and 3.07% for Jet, Alike, and Snap, respectively. As the liquid monomer to powder ratio increased, the shrinkage-strain values tend to be decreased linearly (r=-0.769 for Alike, -0.717 for Jet, -0.435 for Snap, $r^2=0.592$ for Alike, 0.515 for Jet, 0.189 for Snap; P<0.05). Conclusion. The increase of the liquid monomer to powder ratio from 1.0:3.0 to 1.0:1.0 had a significant effect on the shrinkage-strain kinetics of polymer-based crown and FPD materials investigated. This increased the working time and decreased the shrinkage-strain during polymerization.

Evaluation of C. Albicans and S. Mutans adherence on different provisional crown materials

  • Ozel, Gulsum Sayin;Guneser, Mehmet Burak;Inan, Ozgur;Eldeniz, Ayce Unverdi
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.335-340
    • /
    • 2017
  • PURPOSE. Bacterial adhesion on provisional crown materials retained for a long time can influence the duration for which permanent prosthetic restorations can be healthily worn in the oral cavity. The aim of this study was to compare seven different commonly used provisional crown materials with regard to Streptococcus mutans and Candida albicans surface adhesion. MATERIALS AND METHODS. For each group, twenty specimens of the provisional fixed prosthodontic materials TemDent ($Sch{\ddot{u}}tz$), Imident (Imicryl), Tab 2000 (Kerr), Structur Premium (Voco), Systemp (Ivoclar Vivadent), Acrytemp (Zhermack), and Takilon-BBF (Takilon) were prepared (diameter, 10.0 mm; height, 2.0 mm). Surface roughness was assessed by atomic force microscopy. Each group was then divided into 2 subgroups (n=10) according to the microbial suspensions used: S. mutans and C. albicans. The specimens were incubated at $37^{\circ}C$ with S. mutans or C. albicans for seven days. Bacterial adherence on surfaces was assessed using the 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) assay. RESULTS. S. mutans showed maximum adhesion to Structur, followed by Systemp, Acrytemp, Takilon, Tab 2000, Imident, and TemDent (P<.05). The highest vital C. albicans adhesion was noted on Takilon, followed by Imident and Tab 2000; the lowest adhesion was noted on Systemp (P<.05). CONCLUSION. The materials showed significant differences in the degree of bacterial adhesion. C. albicans showed higher surface adhesion than S. mutans on provisional crown and fixed partial denture denture materials.

IN VITRO STUDY ON EXOTHERMIC REACTION OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS MEASURED BY DIFFERENTIAL SCANNING CALORIMETRY

  • Ko, Mun-Jeung;Pae, Ahran;Kim, Sung-Hun
    • 대한치과보철학회지
    • /
    • 제44권6호
    • /
    • pp.690-698
    • /
    • 2006
  • Statement of problems. The heat produced during polymerization of polymer-based provisional materials may cause thermal damage to the vital pulp. Purpose. This study was performed to evaluate the exotherm reaction of the polymerbased provisional materials during polymerization by differential scanning calorimetry and to compare the temperature changes of different types of resins. Material and methods. Three dimethacrylate-based materials (Protemp 3 Garant, Luxatemp Plus, Luxatemp Fluorescence) and five monomethacrylate- based material (Snap, Alike, Unifast TRAD, Duralay, Jet) were selected. Temperature changes of polymer-based provisional materials during polymerization in this study were evaluated by D.S.C Q-1000 (TA Instrument, Wilmington, DE, USA). The following three measurements were determined from the temperature versus time plot: (1) peak temperature, (2) time to reach peak temperature, (3) heat capacity. The data were statistically analyzed using one-way ANOVA and multiple comparison Bonferroni test at the significance level of 0.05. Results. The mean peak temperature was $39.5^{\circ}C({\pm}\;1.0)$. The peak temperature of the polymer-based provisional materials decreased in the following order: Duralay > Unifast TRAD, Alike > Jet > Luxatemp Plus, Protemp 3 Garant, Snap, Luxatemp Fluorescence. The mean time to reach peak temperature was 95.95 sec $({\pm}\;64.0)$. The mean time to reach peak temperature of the polymer-based provisional materials decreased in the following order: Snap, Jet > Duralay > Alike > Unifast TRAD > Luxatemp Plus, Protemp 3 Garant, Luxatemp Fluorescence. The mean heat capacity was 287.2 J/g $({\pm}\;107.68)$. The heat capacity of the polymer-based provisional materials decreased in the following order: Duralay > TRAD, Jet, Alike > Snap, Luxatemp Fluorescence, Protemp 3 Garant, Luxatemp Plus. Conclusion. The heat capacity of materials, determined by D.S.C., is a factor in determining the thermal insulating properties of restorative materials. The peak temperature of PMMA was significantly higher than others (PEMA, dimethacrylate). No significant differences were found among PEMA (Snap) and dimethacrylate (P >0.05). The time to reach peak temperature was greatest with PEMA, followed by PMMA and dimethacrylate. The heat capacity of PMMA was significantly higher than others (PEMA, dimethacrylate). No significant differences were found among PEMA and dimethacrylate (P >0.05).