• Title/Summary/Keyword: protonation constants

Search Result 46, Processing Time 0.021 seconds

Synthesis and Properties of Polydentate Schiff Base Ligands having $N_nO_2$ (n=3~5) Donor Atoms and their Transition Metal Complexes (여러자리 질소-산소계 시프염기 리간드와 전이금속착물의 합성 및 특성)

  • Kim, Sun-Deuk;Shin, Yun-Yeol;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.366-373
    • /
    • 1998
  • Polydentate Schiff base ligands, BSDT(1,9-bis(2-hydroxyphenyl)-2,5,8-triaza-1,8-nonadiene) having $N_3O_2$ atoms, BSTT(1,12-bis(2-hydroxyphenyl)-2,5,8,11-tetraaza-1,11-dodecadiene) having $N_4O_2$ atoms, BSTP(1,15-bis(2-hydroxyphenyl)-2,5,8,11,14-pentaaza-1,14-pentadodecadiene) having $N_5O_2$ atoms were synthesized. Protonation constants of these polydentate ligands were measured by potentiometry. Stability constants of the complexes between these ligands and the metal ions such as Cu(II), Ni(II) and Zn(II) were measured in DMSO by a polarographic method. It was observed that all metal(II) ions employed in this study formed 1:1 complexes with Schiff base ligands. Stability constants for the complex formation were in the order of Cu(II)>Ni(II)>Zn(II), and for the ligands were in the order of BSTP>BSTT>BSDT. There are due to the increase in the number of donor atoms. Both enthalpy and entropy changes were obtained in negative values. Exothermicity for the complex formation indicated tight binding between the ligands and metal ions. The negative entropy change would be related to the fact that solvent molecules are strongly interacting with the metal complexes.

  • PDF

Kinetics Studies on the Mechanism of Hydrolysis of S-Phenyl-S-vinyl-N-p-tosylsulfilimine Derivatives

  • Pyun, Sang-Yong;Kim, Tae-Rin;Lee, Chong-Ryoul;Kim, Whan-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.306-310
    • /
    • 2003
  • Hydrolysis reactions of S-phenyl-S-vinyl-N-p-tosylsulfilimine (VSI) and its derivatives at various pH have been investigated kinetically. The hydrolysis reactions produced phenylvinylsulfoxide and p-toluene sulfonamide as the products. The reactions are first order and Hammett ρ values for pH 1.0, 6.0, and 11.0 are 0.82, 0.45, and 0.57, respectively. This reaction is not catalyzed by general base. The plot of k vs pH shows that there are three different regions of the rate constants $(k_t)$ in the profile.; At pH < 2 and pH > 10, the rate constants are directly proportional to the concentrations of hydronium and hydroxide ion catalyzed reactions, respectively. The rate constant remains nearly the same at 2 < pH < 10. On the bases of these results, the plausible hydrolysis mechanism and a rate equation have been proposed: At pH < 2.0, the reaction proceeds via the addition of water molecule to sulfur after protonation at the nitrogen atom of the sulfilimine, whereas at pH > 10.0, the reaction proceeds by the addition of hydroxide ion to sulfur directly. In the range of pH 2.0-10.0, the addition of water to sulfur of sulfilimine appears to be the rate controlling step.

Ionization and Divalent Cation Complexation of Quinolone Antibiotics in Aqueous Solution

  • Park, Hyeong Ryun;Jeong, Gwang Yeong;Lee, Hyeong Cheol;Lee, Jin Gi;Baek, Gi Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.9
    • /
    • pp.849-854
    • /
    • 2000
  • The protonation and divalent cation complexation equilibria of several quinolone antibiotics such as nalidixic acid (NAL),flumequine (FLU), oxolinic acid (OXO), ofloxacin (OFL), norfloxacin (NOR) and enoxacin (ENO) have been examined by potentiome tric titration and spectrophotometric method. The antibacterial activity of these drugs depends upon the pH and the concentration of metal cations such as Mg2+ , Ca2+ in solu-tion. The apparent ionization constants of NAL, FLU, OXO, OFL, NOR and ENO in aqueous solution were found to be 6.33, 6.51, 6.72, 7.18, 7.26, and 7.53, respectively. In aqueous solution, NAL, FLU and OXO were found to be present mainly as two chemical species : molecularand anionic; but OFL, NOR and ENO were present mainly as three chemical species : anionic, neutral zwitterionic and cationic form, in equilibrium. The pKa1 and pKa2are found to be 6.10 and 8.28 for OFL; 6.23 and 8.55 for NOR; 6.32 and8.62 for ENO, respec-tively. The complex formation constants between OFL, NOR or FLU and some divalent cations are measured at pH 7.5. The 1 : 1 complexes are formed mainly by ion-dipole interaction. FLU has somewhat larger Kf values than OFL and NOR because its molecular size is small and the FLU is present asanionic form at pH 7.5.

A Study on the Kinetics and Mechanism of Hydrolysis of N-tert-Butyl-${\alpha}$-Phenylnitrone Derivatives (N-tert-Butyl-${\alpha}$-Phenylnitrone 유도체의 가수분해 반응메카니즘과 반응속도론적 연구)

  • Gwak, Chun-Geun;Lee, Kwang-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 1998
  • The rate constants of hydrolysis of N-tert-butyl-${\alpha}$-phenylnitrone and its derivatives have been determined by UV spectrophotometry at $25^{\circ}C$ and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equations derived and judging from the hydrolysis products obtained and general base and substituent effects, plausible mechanism of hydrolysis in various pH range have been proposed. Below pH 4.5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}-carbon$. Above pH 10.0, the hydrolysis was proceeded by the addition of hydroxides ion to ${\alpha}-carbon$. In the range of 4.5${\sim}$10.0 the addition of water to nitrone was rate controlling step.

The pH Dependence of Metal Tetrakis (4-sulfonato-phenyl) porphine Structure Probed by Raman Spectroscopy

  • Yoon Minjoong;Chang Jae-Rim;Kim Dongho
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.40-44
    • /
    • 1988
  • The pH dependence studies of Raman spectra are reported for water-soluble free-base, Zn, Co and Cu tetrakis (4-sulfonatophenyl) porphine in pH 4, pH 7 and pH 13.9 aqueous solution. For free base porphine, the substantial differences are found in absorption and Raman spectra between pH 4 and pH 7 or pH 10 aqueous solutions due to the protonation at low pH. For Zn and Co porphyrins, the hydrolysis equilibrium constants are obtained by spectrophotometric titration experiments. The consistent shifts in Raman frequencies are found at high pH due to the hydrolysis. For Cu porphyrins, instead of hydrolysis the aggregation effect is detected at high pH through the absorption and Raman studies.

Fluorescence Enhancement of Ethidium Bromide by DNA Bases and Nucleosides

  • Pyun, Chong-Hong;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.142-147
    • /
    • 1989
  • Fluorescence enhancements of ethidium bromide (EB) by solution species of low molecular weights such as DNA base molecules and nucleosides in water are reported. The degree of enhancements was determined by intensity as well as lifetime measurements for EB fluorescence. Experiments including solvent effects on absorbance and fluorescence spectra of EB, effects of protonation on the EB absorbance spectrum, and determination of equilibrium constants for EB-DNA bases have been performed to help explain the fluorescence enhancement. The results suggest that the excited state stabilization in the hydrophobic environment, the loss of torsional/vibrational energy of amino groups, and the change in the electronic transition characteristics are all responsible for the fluorescence enhancement.

Kinetic Studies on the Addition of Potassium Cyanide to α,N-Diphenylnitrone

  • 김태린;김영호;변상용
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.712-714
    • /
    • 1999
  • The rate constants for the nucleophilic addition of potassium cyanide to α,N-diphenylnitrone and its derivatives (p-OCH3, p-CH3, p-Cl, and p-NO2) were determined by ultraviolet spectrophotometer at 25℃, and the rate equations which can be applied over a wide pH range were obtained. On the basis of pH-rate profile, adduct analysis, general base catalysis and substituent effect, a plausible mechanism of this addition reaction was proposed: At high pH, the cyanide ion to carbon-nitrogen double bond was rate controlling, however, in acidic media, the reaction proceeded by the addition of hydrogen cyanide molecule to carbon-nitrogen double bond after protonation at oxygen of a,N-diphenylnitrone. In the range of neutral pH, these two reactions occured competitively.

Kinetic Studies on the Nucleophilic Addition of Thiophenol Derivatives to 4'-[N- (9-Acridinyl) ]-1'-( N- methanesulfonyl) -3'-methoxyquinonediimide

  • 김태린;정동인;변상용
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.374-379
    • /
    • 1997
  • The rate constants for the nucleophilic addition of thiophenol derivatives (p-OCH3, H, p-CH3, m-CH3, p-Br and p-NO2) to 4'-[N-(9-acridinyl)]-1'-(N-methanesulfonyl)-3'-methoxyquinonediimide (AMQD) were determined by ultraviolet spectrophotometer in water at 5 ℃, and rate equations which can be applied over a wide pH range were obtained. On the basis of pH-rate profile, Bronsted plot, adduct analysis, general base catalysis and substituent effect, a plausible mechanism of this addition reaction was proposed: Below pH 2.5, the reaction proceeded by the addition of thiophenol molecule to 6'-position of quinonoid after protonation at the acridinyl nitrogen. Above pH 6.2, the addition of sulfide anion to 6'-position of quinonoid was rate controlling. However, in the range of pH 3.0-6.0, these two reactions occured competively.

Binding Free Energy Simulations of the HIV-1 Protease and Hydroxyethylene Isostere Inhibitors

  • Won, Yeong Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1207-1212
    • /
    • 2000
  • The free energy simulation technique is used to evaluate the relative binding affinity of a set of hydroxyethylene isostere inhibitors of the HIV-1 protease. The binding reactions and an alchemical mutation construct the thermodynamic cycle, which reduces the free energy difference of the binding interactions into that of the alchemical processes. In the alchemical process, a methyl group is mutated into a hydrogen atom. Albeit the change is a small perturbation to the inhibitor-protease complex, it results in 25 fold difference in the binding constants. The simulation reproduces the experimentally measured binding affinities within 2% of the free energy difference. The protonation state of the catalytic aspartic acid residues is also investigated through the free energy simulations.

Kinetics and Mechanism of the Hydrolysis of ${\alpha}$, N-Diphenylnitrone

  • Tae-Rin Kim;Kwang-Il Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.273-276
    • /
    • 1991
  • The rate constants of hydrolysis of ${\alpha}$, N-diphenylnitrone and its derivatives have been determined by UV spectrophotometry from pH 2.0 to 13.5, and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equation, hydrolysis product, and general base and substituent effects, a plausible mechanism of hydrolysis has been proposed: Below pH 5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}$-carbon. However, above pH 11, the hydrolysis was proceeded by the addition of hydroxide ion to ${\alpha}$-carbon. In the range of pH 5-11, the addition of water to nitrone is rate controlling step.