• Title/Summary/Keyword: proton metabolites

Search Result 43, Processing Time 0.021 seconds

Measurement and Assessment of Absolute Quantification from in Vitro Canine Brain Metabolites Using 500 MHz Proton Nuclear Magnetic Resonance Spectroscopy: Preliminary Results (개의 뇌 조직로부터 추출한 대사물질의 절대농도 측정 및 평가: 500 MHz 고자장 핵자기공명분광법을 이용한 예비연구결과)

  • Woo, Dong-Cheol;Bang, Eun-Jung;Choi, Chi-Bong;Lee, Sung-Ho;Kim, Sang-Soo;Rhim, Hyang-Shuk;Kim, Hwi-Yool;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • The purpose of this study was to confirm the exactitude of in vitro nuclear magnetic resonance spectroscopy(NMRS) and to complement the defect of in vivo NMRS. It has been difficult to understand the metabolism of a cerebellum using in vivo NMRS owing to the generated inhomogeneity of magnetic fields (B0 and B1 field) by the complexity of the cerebellum structure. Thus, this study tried to more exactly analyze the metabolism of a canine cerebellum using the cell extraction and high resolution NMRS. In order to conduct the absolute metabolic quantification in a canine cerebellum, the spectrum of our phantom included in various brain metabolites (i.e., NAA, Cr, Cho, Ins, Lac, GABA, Glu, Gln, Tau and Ala) was obtained. The canine cerebellum tissue was extracted using the methanol-chloroform water extraction (M/C extraction) and one group was filtered and the other group was not under extract processing. Finally, NMRS of a phantom solution and two extract solution (90% D2O) was progressed using a 500MHz (11.4 T) NMR machine. Filtering a solution of the tissue extract increased the signal to noise ratio (SNR). The metabolic concentrations of a canine cerebellum were more close to rat’s metabolic concentration than human’s metabolic concentration. The present study demonstrates the absolute quantification technique in vitro high resolution NMRS with tissue extraction as the method to accurately measure metabolite concentration.

  • PDF

Evaluation of Antidepressant Drug Effect in a Depressive Animal Model by Proton MR Spectroscopy (양성자 자기공명분광법을 이용한 우울증 동물모델에서의 항우울제 약물 효능 평가)

  • Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Ho;Woo, Dong-Cheol;Yoon, Seong-Ik;Hong, Kwan-Soo;Lee, Hyun-Sung;Cheong, Chae-Joon;Jee, Bo-Keun;Hong, Sung-Tak;Kim, Hwi-Yool;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2008
  • In this study, we observed the alteration of choline signal intensity in hippocampus region of the depressive rat model induced by forced swimming test (FST). The purpose of this study was to evaluate the antidepressant efficacy in the depressive animal model using MR spectroscopy. Fourteen experimentally naive male Sprague-Dawley rats weighting $160{\sim}180\;g$ were used as subjects. Drug injection group was exposed to the FST except for control group. The drugs were administered subcutaneously (SC) in a volume equivalent to 2ml/kg. And three injections were administered 23, 5, and 1h before beginning the given test. 1H MR spectra were obtained with use of a point resolved spectroscopy (PRESS) localization sequence performed according to the following parameters: repetition time, 2500 ms; echo time, 144 ms; 512 average; 2048 complex data points; voxel dimensions, $1.5{\times}2.5{\times}2.5\;mm^3$ ; acquisition time, 25min. There were no differences in NAA/Cr and Cho/Cr ratio between the right and the left hippocampus both normal control rats and antidepressant-injected rats. Also, no differences were observed in NAA/Cr and Cho/Cr ratio between the normal control rats and the antidepressant-injected rats both the right and the left hippocampus. In this study, we found the recovery of choline signals in the depressive animal model similar to normal control groups as injecting desipramine-HCl which was antidepressant causing anti-immobility effects. Thus, we demonstrated that MR spectroscopy was able to aid in evaluating the antidepressant effect of desipramine-HCl.

  • PDF

The Distribution of ATPase and Porin in the Bovine Heart Mitochondrial Cristae (소(牛) 심근 미토콘드리아의 ATPase와 porin의 분포)

  • Kim, Tae-Keun;Min, Byoung-Hoon;Kim, Soo-Jin
    • Applied Microscopy
    • /
    • v.40 no.4
    • /
    • pp.261-266
    • /
    • 2010
  • ATP is the energy source synthesized at the electron transferase that consist of complex I, II, III, IV and V in mitochondrial cristae. The complex V functions as ATPase which composed of sub-complex $F_0$ and $F_1$. Porin or VDAC (voltagedependent anion-selective channel), is a family of small pore-forming proteins of the mitochondrial outer membrane, and play important roles in the regulated flux of anion, proton and metabolites between the cytosolic and mitochondrial compartments. The channel allows the diffusion of negatively charged solutes such as succinate, malate, and ATP in the fully open state, but of positively charged ions in subconducting state. In this study, in order to investigate the relationship of the function and localization between porin and ATPase we observed the distribution of porin and ATPase in the mitochondria of the bovine heart. Monoclonal antibodies against porin and ATPase ${\beta}$-subunit were used to detect porin and ATPase using light microscope with immunohistochemistry and immunofluorescence, and using electron microscope with immunogold-labeling. ATPase were stained in longitudinal section region in cardiac muscle, porin were stained in longitudinal section region in cardiac muscle. We viewed more specific pattern of localization and distribution of these proteins using immunofluorescence method. There were some region which were labeled with porin or ATPase respectively, and others which were labeled both proteins in cardiac muscle. The electron microscope results showed that immunogold labeled porin were labeled locally at mitochondrial outer membrane and ATPase were labeled evenly at mitochondrial cristae. But ATPase was not labeled at mitochondria cristae. These results confirmed the subcellular localizations of porin and ATPase in mitochondrial outer membrane and cristae. Also, we assumed that ATP synthesis always does not activation in all mitochondria exist in the bovine cardiac muscle.