• Title/Summary/Keyword: proton ion

Search Result 318, Processing Time 0.025 seconds

Design of muon production target system for the RAON μSR facility in Korea

  • Jeong, Jae Young;Kim, Jae Chang;Kim, Yonghyun;Pak, Kihong;Kim, Kyungmin;Park, Junesic;Son, Jaebum;Kim, Yong Kyun;Lee, Wonjun;Lee, Ju Hahn
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2909-2917
    • /
    • 2021
  • Following the launch of Rare Isotope Science Project in December 2011, a heavy ion accelerator complex in South Korea, named RAON, has since been designed. It includes a muon facility for muon spin rotation, relaxation, and resonance. The facility will be provided with 600 MeV and 100 kW (one-fourth of the maximum power) proton beam. In this study, the graphite target in RAON was designed to have a rotating disk shape and was cooled by radiative heat transfer. This cool-down process has the following advantages: a low-temperature gradient in the target and the absence of a liquid coolant cooling system. Monte Carlo simulations and ANSYS calculations were performed to optimize the target system in a thermally stable condition when the 100 kW proton beam collided with the target. A comparison between the simulation and experimental data was also included in the design process to obtain reliable results. The final design of the target system will be completed within 2020, and its manufacturing is in progress. The manufactured target system will be installed at the RAON in the Sindong area near Daejeon-city in 2021 to carry out verification experiments.

Effect of Current Density on Ion Conductivity of Membrane in Proton Exchange Membrane (고분자전해질 연료전지에서 고분자막의 이온전도도에 미치는 전류밀도의 영향)

  • Hwang, Byungchan;Oh, Sohyung;Lee, Daewoong;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Na, Il-Chae;Lee, Jung-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this work, we study the ion conductivity by analyzing the impedance to the high current density range that the PEMFC (Proton Exchange Membrane Fuel Cell) is actually operated. The effect of GDL (Gas Diffusion Layer)presence on impedance was investigated indirectly by measuring hydrogen permeability. When the RH (Relative Humidity)was higher than 60% in the low current range (< $80mA/cm^2$), the moisture content of the polymer membrane was sufficient and the ion conductivity of the membrane was not influenced by the current change. However, when RH was low, ion conductivity increased due to water production as current density increased. The ion conductivity of the membrane obtained by HFR (High Frequency Resistance) in the high current region ($100{\sim}800mA/cm^2$)was compared with the measured value and simulated value. At RH 100%, both experimental and simulated values showed constant ion conductivity without being influenced by current change. At 30~70% of RH, the ionic conductivity increased with increasing current density and tended to be constant.

Convenient Preparation of Ion-Exchange PVdF Membranes by a Radiation-Induced Graft Polymerization for a Battery Separator (배터리 분리막을 위한 이온교환형 PVdF 맴브레인의 방사선 그래프트법에 의한 간편한 제조법)

  • Kim, Sang-Kyum;Ryu, Jung-Ho;Kwen, Hai-Doo;Chang, Choo-Hwan;Cho, Seong-Ho
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.126-132
    • /
    • 2010
  • A cation-exchange nanofiber poly(vinylidene fluoride) (PVdF) membrane was prepared by a radiation-induced graft polymerization (RIGP) of sodium styrene sulfonate (NaSS) in the presence of the polymerizable access agents in methanol solution. The used polymerizable access agents include styrene, acrylic acid, and vinyl pyrrolidone. The anion-exchange nanofiber PVdF membrane was also prepared by RIGP of glycidyl methacrylate (GMA) and its subsequent chemical modification. The successful preparations of cation- and anion-exchange PVdF membranes were confirmed via SEM, XPS and thermal analysis. The content of the grafting yield, ion-exchange group, and water uptake was in the range of 30.0~32.3%, 2.81~3.01 mmol/g and 66.6~147%, respectively. The proton conductivity at 20$^{\circ}C$ was in the range of 0.020~0.053 S/cm. From the result, the prepared ionexchange PVdF membrane can be used as a separator in battery cells.

Three Dimensional Computational Study on Performance and Transport Characteristics of PEMFC by Flow Direction (유동방향 변화에 따른 고분자 전해질 연료전지의 성능 및 전달특성에 대한 3차원 수치해석적 연구)

  • Lee, Pil-Hyong;Han, Sang-Seok;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • Many researches for effects of different flow configurations on performance of Proton Exchange Membrane Fuel Cell have extensively been done but the effects of flow direction at the same flow channel shape should be considered for optimal operation of fuel cell as well. In this paper a numerical computational methode for simulating entire reactive flow fields including anode and cathode flow has been developed and the effects of different flow direction at parallel flow was studied. Pressure drop along the flow channel and density distribution of reactant and products and water transport, ion conductivity across the membrane and I-V performance are compared in terms of flow directions(co-flow or counter-flow) using above numerical simulation method. The results show that the performance under counter-flow condition is superior to that under co-flow condition due to higher reactant and water transport resulting to higher ion conductivity of membrane.

Studies on the Preparation and Characterization of PVA Based Cation-exchange Membranes for DMFC Application (직접 메탄올 연료전지 적용을 위한 PVA 기반 양이온교환막 제조 및 특성연구)

  • Jeon, Yi Seul;Kim, Ka young;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.144-151
    • /
    • 2015
  • The water-soluble poly(vinyl alcohol) membranes with the addition of sulfosuccinic acid (SSA) were prepared and to assign the ion exchange capacity, poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA) was added to PVA according to PSSA_MA contents of 70, 80 and 90 wt%. To characterize the resulting membranes, FT-IR, water contents, ion exchange capacity, proton conductivity and methanol permeability were measured. As PSSA_MA contents increased, water contents, ion exchange capacity, proton conductivity increased, but methanol permeability decreased. From these results, the best preparation component was known as PVA10/SSA9/PSSA_MA80.

Efficiency of Gas-Phase Ion Formation in Matrix-Assisted Laser Desorption Ionization with 2,5-Dihydroxybenzoic Acid as Matrix

  • Park, Kyung Man;Ahn, Sung Hee;Bae, Yong Jin;Kim, Myung Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.907-911
    • /
    • 2013
  • Numbers of matrix- and analyte-derived ions and their sum in matrix-assisted laser desorption ionization (MALDI) of a peptide were measured using 2,5-dihydroxybenzoic acid (DHB) as matrix. As for MALDI with ${\alpha}$-cyano-4-hydroxy cinnamic acid as matrix, the sum was independent of the peptide concentration in the solid sample, or was the same as that of pure DHB. This suggested that the matrix ion was the primary ion and that the peptide ion was generated by matrix-to-peptide proton transfer. Experimental ionization efficiencies of $10^{-5}-10^{-4}$ for peptides and $10^{-8}-10^{-7}$ for matrices are far smaller than $10^{-3}-10^{-1}$ for peptides and $10^{-5}-10^{-3}$ for matrices speculated by Hillenkamp and Karas. Number of gas-phase ions generated by MALDI was unaffected by laser wavelength or pulse energy. This suggests that the main role of photo-absorption in MALDI is not in generating ions via a multi-photon process but in ablating materials in a solid sample to the gas phase.

Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy (첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰)

  • Choi, Sang Gyu
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.413-422
    • /
    • 2019
  • Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

A Study on Electrostatic Discharging in Ultrapure and Electrolyzed Waters Using Kelvin's Thunderstorm Effect (캘빈방전 효과를 이용한 초순수 및 전해이온수의 정전기 방전 연구)

  • Kim, Hyung-won;Jung, Youn-won;Choi, In-sik;Choi, Byung-sun;Choi, Donghyeon;Ryoo, Kun-kul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.5-11
    • /
    • 2022
  • Despite the increasing importance of manufacturing and application R&D for ultrapure deionized water and electrolyzed ion water, various and systematic studies have not been conducted until now. In this study, the electrostatic discharge (ESD) behavior of electrolyzed ion water using a proton exchange membrane(PEM) was evaluated according to the type, flow rate, and bubble of electrolyzed ion water. In addition, by observing that Oxidation Reduction Potential (ORP) value returns to the unique value of electrolyzed ion water after electrostatic discharge, the possibility of two types of ions participating in electrostatic discharge ((H2O)n+ (assumed)) and ions for maintaining the characteristics of electrolyzed water could be inferred. In order to confirm the chemical structure and characteristics of the cations, in-depth research related to water molecular orbital energy or band gap should be followed.

Development of Membrane Type Liquid Variable Compensator

  • Takahashi, Seiji;Ochiai, Makoto;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.183-185
    • /
    • 2002
  • Heavy ion and proton therapy necessitate range weeks, which are time consuming. Three types of variable compensator, membrane type liquid variable compensator, are proposed by some of the authors to overcome the difficulties, by those arbitrarily thickness distribution of compensator obtained from treatment planning is created at the site of treatment. None of the ideas, however, is yet realized. In this research, we are trying to construct prototype membrane-type liquid variable compensator. This variable compensator partitions air and liquid with elasticity membrane and changes the surface of the elasticity membrane with the thread. The air and oil move through holes to and from the out of beam side of two boxes in which they are contained. The boxes are made of Plexiglas(PMMA), the thread which is made of nylon, the elasticity film which is made from latex for the moment.

  • PDF

Switching Characteristics Enhancement of PT type Power Diodes by means of Particle Irradiation (입자 조사에 의한 PT형 전력 다이오드의 스위칭 특성 향상)

  • Kim, Byoung-Gil;Choi, Sung-Hwan;Lee, Jong-Hun;Bae, Young-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.16-17
    • /
    • 2005
  • Local lifetime control by ion implantation has become an useful tool for production of modern power devices. In this work, punch-through diodes were irradiated with protons for the high speed power diode fabrication. Proton irradiation was executed at the various energy and dose conditions. Characterization of the device was performed by I-V, C-V and Trr measurement. We obtained enhanced reverse recovery time characteristics which was about 45% of original device and about 73% of electron irradiated device. The measurement results showed that proton irradiation was able to effectively reduce minority carrier lifetime.

  • PDF